Problemas del boletín

Giro de un triedro

Los triedros y están definidos de modo que sus orígenes y los ejes coinciden. El triedro "1" está en reposo y el triedro "0" gira respecto al "1" con velocidad angular uniforme , de modo que el ángulo indicado en la figura es .

  1. Calcula las derivadas de los vectores de la base del triedro "0" vistos desde el triedro "1".
  2. Dado el vector calcula

  1. Expresa el resultado en los vectores de la base móvil (triedro "0") y la base fija (triedro "1").
  2. Haz el mismo cálculo para el vector


Disco engarzado en otro disco

En la figura se muestra un disco de radio (sólido "2"), que gira con velocidad angular , constante, alrededor del eje perpendicular a él, . Dicho eje está rígidamente unido a una plataforma (sólido "0"), que gira también con velocidad angular constante , alrededor del eje vertical de un sistema de referencia fijo Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle O_1X_1Y_1Z_1} (sólido "1"). Determina las magnitudes cinemáticas y en el instante representado en la figura.

Hélice de un avión que gira

El avión (sólido "0") de la figura se mueve de modo que el centro de su hélice describe una circunferencia de radio . La velocidad angular de este giro es uniforme y su módulo es . Además, la hélice (sólido "2"), cuyo radio es , gira en torno a un eje perpendicular a ella y que pasa por su centro, con velocidad también uniforme y de módulo . Se pide

  1. La reducción cinemática de los movimientos {01} y {20}.
  2. Aplicando la composición de velocidades, la velocidad y aceleración del punto más alto de la hélice (punto en la figura).
  3. La reducción cinemática del movimiento {21} en y la ecuación del E.I.R.M.D. ¿Qué tipo de movimiento describe la hélice respecto al sólido "1"?
  4. Calcule numéricamente y para los valores , , y .

Nota: Se recomienda utilizar el triedro asociado al sólido "0" para resolver el problema.

Placa empujando un disco

El cuadrado de la figura (sólido "0") realiza un movimiento plano cuando uno de sus lados desliza sobre un plano horizontal fijo (sólido "1"). El cuadrado empuja a un disco de radio (sólido "2") que rueda sin deslizar sobre el plano "1".

  1. Determine la posición de los C.I.R. de los diferentes movimientos en el instante reflejado en la figura.
  2. Determine las reducciones cinemáticas de los movimientos en el instante en que la velocidad absoluta del punto del sólido "0" es .
  3. Si el sistema parte del reposo y el punto del sólido "0" realiza un movimiento uniformemente acelerado, con aceleración , obtenga la expresión en función del tiempo del vector rotación y su derivada temporal .
  4. En las condiciones del apartado anterior, calcule la expresión de la aceleración , así como la velocidad y aceleración relativa y .


Biela-manivela

La figura muestra el mecanismo de biela-manivela. La manivela (sólido "0") gira alrededor del punto con velocidad angular uniforme . La biela (sólido "2") gira alrededor de su punto de unión con la manivela (punto ). El otro extremo de la biela está unido (punto ) al deslizador (sólido "3") que realiza una traslación sobre el eje

Utilizando el triángulo y la descomposición {31}={32}+{20}+{01}, verifica que el movimiento {31} es una traslación.

  1. Determina gráficamente la posición de los C.I.R de todos los movimientos del problema.
  2. Determina los vectores y .

Barras articuladas con barra fija

Una barra delgada de longitud (sólido "0") está articulada en el punto fijo . En el otro extremo de la barra (punto ) se articula otra barra (sólido "2") de longitud . A su vez, el otro extremo de la barra 2 (punto ) se articula en un pasador obligado a moverse sobre una barra fija vertical. En todo instante la velocidad del punto es , con y constante. En el instante indicado en la figura las dos barra son perpendiculares y forman un ángulo con la barra fija vertical. Todas las preguntas siguientes corresponden a este instante.

  1. Determina el vector de posición del punto es
  2. Encuentra gráficamente y analíticamente la posición de los C.I.R. de los movimientos {01}, {20} y {21}.
  3. Calcula los vectores rotación de los movimientos {21} y {01}.
  4. Calcula el vector aceleración del movimiento {21}.

CIR de un velocípedo

Los radios de las ruedas delantera (sólido "2") y trasera (sólido "0") de un velocípedo son y , respectivamente (); y los puntos de contacto de aquéllas con el suelo (sólido "1") están separados una distancia . Determinar gráficamente la posición del C.I.R. del movimiento {20}, sabiendo que las dos ruedas del velocípedo ruedan sin deslizar sobre el suelo.

Movimiento de barra apoyada en planos no ortogonales

Una barra rígida (sólido “2”) de longitud realiza un movimiento plano cuando sus extremos y deslizan, respectivamente, por un plano horizontal y otro inclinado (sólido “1”) que forman un ángulo .

  1. Describa la reducción cinemática del movimiento {21} en términos del ángulo y de su derivada temporal , así como la posición del C.I.R.
  2. Si el extremo realiza un movimiento rectilíneo uniforme con velocidad , obtenga el vector rotación y su derivada temporal , en función de la posición de la barra.
  3. En las condiciones del apartado anterior, obtenga la expresión de la velocidad y la aceleración del extremo .

Otros problemas

Coche sobre una plataforma circular

Una plataforma circular gira alrededor de un eje perpendicular a ella que pasa por su centro con velocidad angular uniforme . Un coche se mueve radialmente desde el centro de la plataforma hacia fuera con velocidad uniforme . Encuentra la expresión de la velocidad del coche visto desde la plataforma y desde un observador en reposo absoluto. Describe las trayectorias que describe el coche para cada uno de estos observadores.

Ayuda


Aro con deslizador

Sea un aro de centro y radio (sólido "2") que se mueve, en un plano fijo (sólido "1"), de tal modo que está obligado a deslizar en todo instante por un pasador giratorio situado en el punto , y además se halla articulado en su punto a un deslizador que se mueve siempre sobre el eje horizontal (ver figura). Con carácter auxiliar, se define el sistema de ejes (sólido "2") solidario con el aro en su movimiento. Se pide:

  1. Determinar gráfica y analíticamente la posición del C.I.R. del movimiento {21}.
  2. Sabiendo que el ángulo , que forman los ejes y , verifica la ley horaria (donde es una constante conocida), calcular y .

Disco apoyado en una placa y una pared

El sistema mecánico de la figura está compuesto por los siguientes sólidos rígidos:

  1. Sólido "1": plano fijo .
  2. Sólido "3": placa cuadrada, de lado , que desliza sobre el eje , manteniendo su lado inferior completo en permanente contacto con él.
  3. Sólido "2": disco, de centro en y radio que, en todo instante, rueda sin deslizar sobre el eje en el punto de contacto , a la vez que rueda y desliza sobre la placa cuadrada en el punto de contacto .
  4. Sólido "0": sistema de ejes , definido de tal modo que el eje contiene permanentemente al centro del disco, mientras que el eje es tangente a dicho disco.

En el instante considerado en la figura

  1. determina gráficamente la posición de los C.I.R. , , , , .
  2. Utilizando como parámetro el ángulo del dibujo (ángulo que forma el eje con respecto al lado superior de la placa cuadrada), y teniendo presentes las leyes de composición de velocidades y de velocidades angulares aplicadas a:

calcula las reducciones cinemáticas en de los movimientos {20}, {03}, {31} y {21}:

Barra horizontal sobre un disco

El sistema de la figura consta de un disco (sólido "0"), de centro y radio , que rueda sin deslizar sobre el eje horizontal del triedro fijo (sólido "1"); y de una barra de longitud indefinida (sólido "2"), que se desplaza horizontalmente con velocidad constante , manteniéndose siempre en contacto tangente con el perímetro del disco (punto ) y sin deslizar sobre éste. Halla:

  1. Las reducciones cinemáticas de los movimientos {21}, {01} y {20} en el centro del disco (punto ), es decir: , y .
  2. La aceleración relativa barra-disco del punto de contacto , es decir, .

Partícula moviéndose radialmente sobre el radio de un disco

Una partícula recorre con velocidad constante el diámetro de un disco de radio (sólido "0"). A su vez, el disco, contenido en todo instante en el plano fijo (sólido "1") rueda sin deslizar sobre el eje , de tal modo que su centro avanza con velocidad .

Asociando al disco el triedro solidario (sólido "0"), y definiendo un triedro auxilar (sólido "2") cuyos ejes y tienen las mismas direcciones que los ejes y Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle CY_0} , respectivamente; determina, en función de los datos del problema (Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle R} y Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle v_0} ) y de las coordenadas polares que se definen en la figura (Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \rho} y Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \theta} ):

  1. La velocidad absoluta (Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{v}_{21}^P} ) y la aceleración absoluta (Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{a}_{21}^P} ) de la partícula Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle P} .
  2. La posición del C.I.R. del movimiento {21} (analíticamente).

Nota: Se recomienda el uso de la base vectorial asociada al triedro "0" para resolver el ejercicio.

Disco articulado con una varilla

El mecanismo de la figura está formado por un disco (sólido "0"), de radio Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle R} ; y por una varilla Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle OA} (sólido "2"), de longitud Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle 2R} , articulada en su extremo Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle O} al centro del disco. El disco rueda sin deslizar sobre la recta fija (sólido "1") de ecuación , mientras que el extremo de la varilla está obligado a deslizar sobre el eje . Sabiendo que el mecanismo se mueve conforme a la ley horaria (donde es una constante conocida), se pide:

  1. Los vectores de posición, ; velocidad, ; y aceleración , del movimiento absoluto del extremo de la varilla. ¿Qué tipo de movimiento describe dicho punto?
  2. Reducciones cinemáticas (vectores velocidad angular y velocidad de un punto) de los movimientos {21}, {01} y {20}.
  3. Determinación gráfica y analítica de la posición del C.I.R. del movimiento {21}.

Movimientos planos de disco, barra y cuadrado

El sistema de la figura está formado por un disco de radio (sólido “0”), que rueda sin deslizar sobre el eje fijo , desplazándose su centro con velocidad constante , respecto del sistema de referencia fijo . Una barra de longitud (sólido “2”), tiene un extremo articulado en y está obligada a pasar por el punto fijo . El otro extremo de la barra () se encuentra siempre de una acanaladura practicada en el lado de un cuadrado (sólido “3”) que desliza sobre el eje .

  1. Describa las reducciones cinemáticas de los movimientos en función de los datos del enunciado y de la variable geométrica .
  2. Para una posición arbitraria del sistema, dada por el ángulo , determine gráfica o analíticamente -y de manera razonada-, las posiciones de los C.I.R. de todos los movimientos relativos en el sistema.
  3. Obtenga las posiciones en las que el cuadrado se detiene (respecto del sólido fijo) y calcule el valor de la aceleración absoluta del cuadrado () en dicha posición.
  4. Calcule las componentes intrínsecas de la velocidad y la aceleración absolutas del extremo de la barra cuando el sistema se halla en la posición dada por .

Disco con varilla articulada

Un disco de radio (sólido "0"), se mueve contenido siempre en el mismo plano vertical . El centro del disco realiza un movimiento rectilíneo uniforme con velocidad respecto del plano horizontal fijo (sólido "1"), sobre el que rueda sin deslizar. Un barra rígida de longitud (sólido "2"), contenida también en , tiene su extremo articulado en un punto del perímetro del disco, mientras que su extremo se desliza sobre el plano horizontal.

  1. Determina la posición de los C.I.R. en las cuatro posiciones indicadas en la figura.
  2. Explica qué tipo de movimiento realiza la barra en cada uno de los instantes correspondientes a dichas posiciones.

Barra sobre dos discos que ruedan sin deslizar

Sendos discos de radios radios y (sólidos “0” y “2”, respectivamente) se encuentran siempre contenidos en el mismo plano y en contacto puntual sobre el sólido fijo “1”. Además, hay una barra rígida (sólido “3”), también contenida en el plano de los discos y en contacto puntual con éstos. El sistema se mueve de manera que los discos “0” y “2” ruedan sin deslizar de manera simultánea sobre los sólidos “1” y “3”.

  1. Determine los C.I.R. de los diferentes movimientos relativos en el sistema descrito. ¿Cómo es el movimiento instantáneo de la barra “3” respecto del sólido fijo “1”?
  2. Suponiendo que en el movimiento del disco de mayor radio respecto del sólido fijo la velocidad de su centro es un vector constante de valor conocido , determine las reducciones cinemáticas de los movimientos , y .
  3. Determine la ley horaria que sigue la distancia entre los puntos de contacto de los discos con el sólido fijo. Supóngase que en el instante inicial esta distancia es .
  4. Determine la reducción cinemática del movimiento relativo del disco pequeño respecto del grande, . Calcule la aceleración instantánea del centro en dicho movimiento.

Disco que arrastra una varilla

En el sistema de la figura los tres sólidos realizan un movimiento plano cuando el disco de radio (sólido “0”) rueda sin deslizar sobre el sólido “1”. El centro del disco, , se desplaza con una velocidad . La barra de longitud (sólido “2”) tiene su extremo articulado en el centro del disco, mientras que se apoya en el borde del sólido “1”.

  1. Determine gráficamente la posición de los C.I.R. de los movimientos {21}, {20} y {01}.
  2. En el instante en que la distancia entre los puntos y es igual a , la velocidad del punto es . Calcule las reducciones cinemáticas de los tres movimientos en el punto .
  3. Exprese el vector de posición del punto en el sistema “1”, , en función de un ángulo Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \beta} arbitrario.
  4. Si Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \dot{\beta}=-\Omega} , con Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \Omega} constante y positiva, calcule Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mathbf{v}_{21}^A(t)} y Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mathbf{a}_{21}^A(t)} para todo instante de tiempo, en función de Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \beta} , Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \Omega} y Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle R} .

Movimientos planos de manivela y disco

El sistema de la figura está constituido por un plano vertical fijo Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle OX_1Y_1} (sólido “1”) que en todo instante contiene a otros dos sólidos en movimiento: un disco de radio Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle R} y centro Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle C} (sólido “2”), que rueda sin deslizar sobre el eje horizontal Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle OX_1} , y una manivela ranurada Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle OA} (sólido “0”) que es obligada a girar con velocidad angular constante Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \omega} alrededor de un eje permanente de rotación que pasa por el punto Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle O} y es perpendicular al plano fijo definido como sólido “1” (eje Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle OZ_1} ). Los movimientos de ambos sólidos se hayan vinculados entre sí porque el centro Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle C} del disco está obligado a deslizar en todo instante a lo largo de la ranura de la manivela. Considerando el movimiento Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \{20\}} como el movimiento problema, se pide:

  1. Determinar el C.I.R. de dicho movimiento (Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle I_{20}} ), haciendo uso de procedimientos graficos.
  2. Utilizando como parámetro geométrico el ángulo Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \theta} indicado en la figura, obtener la reducción cinemática del movimiento Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \{20\}} en el punto Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle C} , Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \{\vec{\omega}_{20} (\theta), \vec{v}_{20}^C (\theta)\}} .
  3. Caracterizar el movimiento Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \{20\}} en el instante en que Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \theta=\pi/2} , indicando de forma razonada si se trata de una situación de: (a) rotación instantánea; (b) traslación instantánea; (c) movimiento helicoidal tangente, o (d) reposo instantáneo.

Disco rodando sobre una barra que rota

Una barra de longitud indefinida (sólido "0") se mueve siempre contenida en un plano fijo Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \Pi_1\equiv OX_1Y_1} (sólido "1"). En el punto fijo Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle O } del plano Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \Pi_1 } está articulado uno de los extremos de la barra, la cuál se mueve de manera que el ángulo que forma con el eje Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle OX_1 } varía linealmente con el tiempo, según la ley horaria Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \theta(t) =\omega t } . Un disco de radio Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle R } (sólido "2"), también siempre contenido en el plano , rueda sin deslizar sobre la barra "0". Respecto de un sistema de referencia Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle OX_0Y_0 } solidario con la barra "0", el centro Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle C } del disco realiza un movimiento rectilíneo uniforme de velocidad Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle v_0 } . En el instante inicial Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle (t=0) } , el centro del disco se halla en el eje Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle OY_1 } .

  1. Obtenga los elementos de la reducción cinemática del movimiento {21} y su derivada temporal.
  2. Considérese el caso en que los parámetros del sistema verifican la relación Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle v_0=\omega R } . ¿Qué tipo de movimiento realiza el disco respecto del plano fijo? Determine gráficamente, y de manera razonada, las posiciones de los C.I.R. correspondientes a los movimientos {01}, {20} y {21}.
  3. También en el caso de Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle v_0=\omega R } , calcule las componentes intrínsecas de la aceleración y la velocidad del centro Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle C } del disco en movimiento {21}, en función del tiempo. Obtenga la ley horaria Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle s(t) } para la distancia recorrida por el centro Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle C } del disco, desde el instante inicial, sobre la trayectoria que dicho punto describe en el plano .

Aro con barra articulada

El disco de la figura (sólido "0"), de radio , rueda sin deslizar sobre el eje . El centro del disco se mueve con rapidez constante , como se indica en la figura. Una barra (sólido "2") de longitud está articulada en el punto de la circunferencia exterior del disco. El otro extremo de la barra desliza sobre el eje .

  1. Localiza gráficamente los C.I.R. de los movimientos {01}, {20} y {21} en el instante indicado en la figura. Explica el procedimiento seguido.
  2. Encuentra reducciones cinemáticas de los tres movimientos relativos indicados.
  3. Calcula y .

Manivela y biela alargada

Una barra homogénea (sólido "0") de longitud tiene un extremo articulado en el punto fijo . En el otro extremo, , se articula otra barra homogénea de longitud (sólido "2"). El punto medio de esta barra se articula a su vez en un pasador (punto ), de modo que este punto de la barra se mueve sobre el eje . La barra "0" gira alrededor del eje con velocidad angular uniforme . Todas las magnitudes físicas que se piden corresponden al instante que se muestra en la figura.

  1. Localiza gráfica y analíticamente los C.I.R. de los tres movimientos relativos que se pueden definir en el sistema.
  2. Encuentra reducciones cinemáticas de los tres movimientos relativos. Calcula .
  3. Calcula la derivada temporal de la reducción cinemática del movimiento {21} en el punto .

Barra apoyada sobre placa rectangular

La barra de la figura (sólido "2") está articulada en el punto . Se apoya sobre el vértice de una placa rectangular (sólido "0") de altura . El vértice Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle A} de la placa puede deslizar a lo largo de la barra. La placa desliza sobre el eje Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle OX_1} , de forma que su base está siempre en contacto con el eje. El ángulo que forma la barra con el eje Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle OX_1} es Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \theta(t) = \omega_0t + \pi/6} , con Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \omega_0} constante y positivo.

  1. Escribe el vector de posición absoluto del punto Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle A} del sólido "0".
  2. Encuentra la reducción cinemática de los tres movimientos relativos del sistema.
  3. Determina aceleración Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{a}^{\,O}_{20}} en el instante en que Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \theta=\pi/4} , así como la posición del C.I.R.

Disco con barra articulada

El disco de la figura (sólido "0"), de masa Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle m} y radio Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle R} , rueda sin deslizar sobre el eje Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle OX_1} . Una barra (sólido "2"), de masa Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle m} y longitud Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle R} , se encuentra articulada en el punto Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle A} de la circunferencia del disco. El otro extremo, Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle B} se conecta a un deslizador que se mueve sobre una barra paralela al eje Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle OX_1} . En el instante inicial los puntos Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle G} y Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle A} se encontraban sobre el eje Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle O_1Y_1} (con el punto Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle A} por encima del Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle G} ).

  1. Calcula la velocidad absoluta del punto Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle A} .
  2. Determina la velocidad de rotación Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{\omega}_{20}} .
  3. En esta pregunta y las siguientes suponemos que el punto Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle B} se mueve con velocidad Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{v}=v_0\,\vec{\imath}_1} . Calcula el valor de Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \dot{\theta}} .
  4. Calcula el valor de Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{\alpha}_{21}} .
  5. Determina el valor de Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{v}^{\,O_1}_{21}} en el instante incial.
  6. Calcula el momento cinético del disco respecto al punto de contacto con el suelo en el instante inicial.

Barras articuladas con barra fija

Una barra delgada de longitud Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle 2\sqrt{2}b} (sólido "0") está articulada en el punto fijo Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle O} . En el otro extremo de la barra (punto Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle A} ) se articula otra barra (sólido "2") de longitud Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \sqrt{2}b} . A su vez, el otro extremo de la barra 2 (punto Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle B} ) se articula en un pasador obligado a moverse sobre una barra fija vertical. En todo instante la velocidad del punto Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle B} es Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{v}_0= v_0\,\vec{\jmath}_1} , con Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle v_0>0} y constante. En el instante indicado en la figura las dos barra son perpendiculares y forman un ángulo Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \pi/4} con la barra fija vertical. Todas las preguntas siguientes corresponden a este instante.

  1. Determina el vector de posición del punto Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle B} es
  2. Encuentra gráficamente y analíticamente la posición de los C.I.R. de los movimientos {01}, {20} y {21}.
  3. Calcula los vectores rotación de los movimientos {21} y {01}.
  4. Calcula el vector aceleración del movimiento {21}.


Disco y varilla con dos rotaciones

El sistema de la figura está formado por una varilla Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle AB} de longitud Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle l} (sólido "0"), cuyo extremo Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle A} está fijado en el eje vertical Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle O_1Z_1} , a una altura Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle R} sobre el plano horizontal fijo Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle O_1X_1Y_1} (sólido "1"). La varilla Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle AB} gira alrededor de Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle O_1Z_1} con una velocidad angular constante Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \Omega} , permaneciendo siempre perpendicular a dicho eje vertical fijo. El extremo Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle B} del sólido "0" está articulado al centro de un disco de radio Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle R} (sólido "2"), de modo que la varilla es siempre perpendicular al disco. El disco gira con una velocidad angular constante Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \omega} , coincidiendo su eje de giro con la varilla.

  1. Caracterice los movimientos {01}, {20} y {21} (reducciones cinemáticas).
  2. Obtenga la expresión de la velocidad Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{v}^C_{21}} del punto de contacto del disco con el plano fijo Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle O_1X_1Y_1} , (punto Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle C} ) en términos de los datos del problema. ¿Qué relación debe existir entre las velocidades angulares Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \omega} y Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \Omega} para que el disco ruede sin deslizar sobre el plano?
  3. Obtenga las expresiones de la aceleración angular del movimiento {21} y de la aceleración Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{a}^B_{21}} del centro del disco (punto Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle B} ). Calcule la aceleración del punto de contacto Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle C} perteneciente al disco cuando éste rueda sin deslizar sobre el plano Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle O_1X_1Y_1} .

Cono rodando sin deslizar sobre plano

Un cono recto de radio Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle R} en su base y una altura Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle h=\sqrt{3}\,R} (sólido “2”), se mueve rodando sin deslizar sobre el plano fijo Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle O_1X_1Y_1} (sólido “1”), en el cuál apoya, en cada instante, una generatriz Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \overline{OG}} . La velocidad del centro Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle C} de la base del cono, medida desde el sistema de referencia ligado al sólido “1”, tiene módulo constante de valor Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle v_0} . Para facilitar la descripción del movimiento, se introduce un sistema de referencia Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle OX_0Y_0Z_0} (sólido “0”) con origen Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle O} en el vértice del cono, el eje Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle OZ_0} siempre perpendicular al plano fijo “1”, y cuyo eje Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle OY_0} contiene en cada instante a la generatriz del cono en contacto con dicho plano.

  1. Reducciones cinematicas de los movimientos relativos.
  2. Ejes de rotación y naturaleza de los movimientos.
  3. Campos de aceleraciones.

Horquilla y disco

El sistema de la figura consiste en una horquilla semicircular (sólido "0"), que siempre está paralela al plano fijo Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle O_1X_1Y_1} (sólido "1"). El punto Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle O} de dicho aro (siempre el mismo) se desplaza con velocidad Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle v} sobre el eje Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle O_1Z_1} , a la vez que el aro gira con velocidad angular constante Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \Omega} alrededor de dicho eje fijo. Un disco de radio Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle R} (sólido "2"), se mueve respecto a "0" girando alrededor del diámetro común Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle AB} , con velocidad angular constante Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \omega} .

Nota: Los valores de , y pueden ser positivos o negativos.

  1. ¿Cuándo es nula la velocidad mínima del movimiento {21}?
  2. Qué debe ocurrir para que el eje instantáneo de rotación y mínimo deslizamiento pase por el centro del disco? Calcule en este caso la derivada temporal de la reducción cinemática
  3. ¿Qué condición debe cumplirse para que el movimiento {21} sea una rotación instantánea y el eje instantáneo de rotación pase por el centro del disco?

Dos conos en movimiento relativo

Dos conos rectos de semiángulos en el vértice y (sólidos "0" y "2", respectivamente), se hallan en contacto en todo instante por una generatriz. Cada cono realiza un movimiento de rotación permanente respecto a un sistema de referencia fijo (sólido "1") alrededor de su correspondiente eje de simetría. Las velocidades angulares respectivas son para el movimiento {01} y para el {21}. Además, los conos se mueven de manera que sus puntos en contacto no tienen deslizamiento relativo.

  1. ¿Que tipo de movimiento es el {20}?
  2. En ese movimiento, ¿que puntos tienen velocidad mínima?
  3. ¿Que relación deben cumplir las velocidades angulares del enunciado?
  4. Calcula la aceleración angular .

Esfera sobre dos raíles

Una esfera de radio (sólido "2"), se desplaza sobre dos carriles circulares concéntricos fijos de radios y (sólido "1"), situados en un plano horizontal (ver figura). El movimiento de la esfera es tal que: i) en todo instante, rueda sin deslizar sobre ambos carriles, y ii) su centro realiza un movimiento circular uniforme, siendo el módulo de su velocidad. Considerando cómo sólido móvil intermedio (sólido "0") al plano que contiene en todo instante al centro de la esfera (ver figura), calcula:

  1. Los ejes instantáneos o permanentes de rotación de los movimientos {21}, {20} y {01}.
  2. Reducciones cinemáticas de dichos movimientos,
  3. Para el punto de la esfera en contacto con el carril de mayor diámetro (punto ), los vectores y

Disco y vástago

El sólido rígido "0" del mecanismo de la figura corresponde a un vástago de longitud que, mediante un par cilíndrico situado en su extremo , permanece en todo instante perpendicular al eje vertical fijo (sólido "1"). Dicho par de enlace permite que el vástago gire alrededor de Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle O_1Z_1} con velocidad angular constante de módulo Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle |\vec{\omega}_{01}|=2\omega} y en el sentido mostrado en la figura; a su vez, el extremo Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle O} se desplaza sobre el eje vertical Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle O_1Z_1} en sentido positivo y con velocidad constante, siendo el módulo de ésta Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle |\vec{v}_{01}^O|=v} . El extremo del sólido "0" está articulado al centro de un disco de radio Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle R} (sólido "2"), siempre contenido en el plano vertical Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle OX_0Z_0} ; el movimiento relativo del disco respecto del vástago consiste en una rotación permanente alrededor de un eje paralelo a Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle OY_0} que pasa por Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle C} , en el sentido indicado en la figura y con velocidad angular constante de módulo Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle |\vec{\omega}_{20}|=\omega} . Utilizando la base vectorial del triedro ligado al sólido "0"- Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle OX_0Y_0Z_0} - para expresar las magnitudes vectoriales, determina:

  1. El vector rotación instantánea Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{\omega}_{21}} y su derivada temporal Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{\alpha}_{21}} (vector aceleración angular), correspondientes al movimiento del disco respecto al triedro fijo.
  2. Las velocidades del punto Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle A} del perímetro del disco en el instante en el que aquél ocupa el punto más alto del diámetro vertical(ver figura), para cada uno de los tres movimientos relativos que se distinguen en el mecanismo descrito: Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{v}_{01}^A} , Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{v}_{20}^A} y Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{v}_{21}^A} .
  3. Las aceleraciones Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{a}_{01}^A} , Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{a}_{20}^A} y Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{a}_{21}^A} para el mismo punto y en el mismo instante especificado en el apartado anterior.