Disco engarzado en otro disco (G.I.A.)
De Laplace
Contenido |
1 Enunciado
En la figura se muestra un disco de radio R (sólido "2"), que gira con velocidad angular ω20(t) = ω, constante, alrededor del eje perpendicular a él, O1X0. Dicho eje está rígidamente unido a una plataforma (sólido "0"), que gira también con velocidad angular constante ω01(t) = Ω, alrededor del eje vertical O1Z1 de un sistema de referencia fijo O1X1Y1Z1 (sólido "1"). Determina las magnitudes cinemáticas y
en el instante representado en la figura.
2 Solución
El problema nos pide determinar el movimiento del punto B, perteneciente al sólido "2", en el instante en que se encuentra en su punto más alto. El movimiento {21} puede descomponerse en la rotación del sólido "0" respecto al eje O1Z1 y la rotación del sólido "2" respecto al eje O1X0:
Analicemos en detalle estos dos movimientos
2.1 Movimiento {01}
La reducción de un movimiento consiste en calcular su velocidad angular y la velocidad de uno de los puntos del sólido. Con eso podemos determinar el eje instantáneo de rotación. Para poder determinar la aceleración de cualquier punto necesitamos también la aceleración angular y la aceleración en un punto. Esto es lo que vamos a determinar en este movimiento.
En este caso, el movimiento {01} es un rotación permanente alrededor
del eje O1Z1. El enunciado nos dice que la velocidad angular vale
y es constante en el tiempo. Tenemos entonces

Hemos usado el hecho de que, en este problema, los ejes O1Z0 y
O1Z1 son iguales entre sí e invariantes en el tiempo. Esto nos
permite, por un lado, expresar en función de
ó
, y por otro lado hacer la derivada temporal suponiendo que
no cambia en el tiempo, con lo cual
es nula.
Dado que el eje de rotación es invariante en el tiempo, los puntos en
él tienen velocidad y aceleración nula. Escogiendo, por ejemplo, el
origen O1, podemos caracterizar completamente el movimiento {01}

Como queremos determinar el movimiento del punto B, vamos a calcular
y
. Utilizamos las ecuaciones del
campo de velocidades y aceleraciones del sólido "0"

Este resultado es razonable, pues el punto B pertenece al eje de giro del movimiento.
2.2 Movimiento {20}
En este caso tenemos una rotación alrededor de un eje perpendicular al sólido "2". Hemos elegido el eje O1X0 coincidiendo con este eje de giro. El enunciado dice que la velocidad angular ω20 es constante en el tiempo, por tanto

En este caso, como el sólido derivador es el "0", y la expresión de
en función de
es válida en cualquier instante de
tiempo, podemos hacer la derivada suponiendo
constante, con lo
que
resulta ser nula.
Como el eje de rotación es la recta O1X0, el punto O1 es de
nuevo un punto fijo de este movimiento. Por tanto, la caracterización
del movimiento {20} es

Determinamos también los vectores y

En este movimiento, el punto B realiza un movimiento circular
uniforme, con lo cual es razonable que apunte hacia
el punto O1.
2.3 Movimiento {21}
Podemos describir este movimiento como combinación de los otros dos {21}={20}+{01}. Tenemos

El eje instantáneo de rotación es paralelo a y pasa por
O1, pues
, pues ésta es
cero. Así pues, la caracterización del movimiento {21} es

Es interesante observar que la combinación de dos rotaciones con
velocidad angular constante da una rotación con aceleración angular no
nula. Esto se debe a que la dirección de ΔEIR
cambia con el tiempo. El vector apunta en la dirección en
que se produce este cambio.
2.4 Velocidad y aceleración del punto B
Ahora podemos calcular y
. Si usamos la
composición {21}={20}+{01} podemos utilizar las velocidades y
aceleraciones calculadas anteriormente

También podemos hacer el cálculo a partir de la reducción del movimiento {21} y usando el campo de velocidades y aceleraciones de este movimiento

En la figura se muestran las magnitudes cinemáticas mas relevantes del problema.