Introducción

En los temas anteriores hemos visto como se aplican los principios de la Mecánica Vectorial al estudio del Sólido Rígido. En Mecánica Vectorial las magnitudes que describen el movimiento del sistema son la Cantidad de Movimiento y el Momento Cinético. Y las acciones sobre un Sólido Rígido se describen utilizando fuerzas y pares de fuerzas. Todas estas magnitudes son vectores, de ahí su nombre. El Teorema del Centro de Masas y el Teorema del Momento Cinético proporcionan las ecuaciones diferenciales del movimiento. Estas ecuaciones también son vectoriales.

En Mecánica Analítica, en cambio, la dinámica de los sistemas de partículas se describe usando magnitudes escalares: la energía cinética, la energía potencial, la función de Lagrange, etc. Esto no quiere decir que los vectores no aparezcan. Las acciones sobre un Sólido Rígido todavía se describen usando vectores y pares de fuerzas, especialmente en el caso de sistemas no conservativos. Pero el objetivo será encontrar la función de Lagrange del sistema (un escalar) y a partir de ella encontrar las ecuaciones del movimiento.

La Mecánica Analítica describe el estado de un sistema a través de coordenadas generalizadas. Al analizar un problema el primer paso es identificar las coordenadas generalizadas mas adecuadas y el número mínimo necesario para describir el sistema: el número de grados de libertad. Esto permitirá, en general, eliminar las fuerzas de ligadura del problema. Cualquier magnitud física puede ser una coordenada generalizada: una distancia, un ángulo, una componente de fuerza, etc. En ingeniería serán casi siempre distancias y ángulos.

La Mecánica Analítica es muy potente. Permite encontrar con relativa facilidad las condiciones de equilibrio y las ecuaciones de movimiento de sistemas muy complejos. A cambio, requiere un grado mayor de abstracción en el tratamiento de los problemas.

Coordenadas generalizadas

Ligaduras

Desplazamientos virtuales

Principio de los trabajos virtuales

Fuerzas generalizadas

Fuerzas conservativas