Entrar Página Discusión Historial Go to the site toolbox

Primera Prueba de Control 2017/18 (MR G.I.C.)

De Laplace

1 Momento de inercia de un sólido compuesto de cuatro barras y un aro

El sólido de la figura está compuesto de un aro delgado de masa m y radio R, así como de cuatro barras delgadas, cada una de masa m y longitud R, dispuestas como se indica en la figura. Todos los cuerpos son homogéneos.

  1. Calcula el momento de inercia Izz.
  2. Calcula el tensor de inercia en O expresado en los ejes cartesianos de la figura.
  3. Calcula el momento de inercia respecto al eje Δ de la figura.

2 Barra apoyada sobre placa rectangular

La barra de la figura (sólido "2") está articulada en el punto O. Se apoya sobre el vértice A de una placa rectangular (sólido "0") de altura d. El vértice A de la placa puede deslizar a lo largo de la barra. La placa desliza sobre el eje OX1, de forma que su base está siempre en contacto con el eje. El ángulo que forma la barra con el eje OX1 es θ(t) = ω0t + π / 6, con ω0 constante y positivo.

  1. Escribe el vector de posición absoluto del punto A del sólido "0".
  2. Encuentra la reducción cinemática de los tres movimientos relativos del sistema.
  3. Determina aceleración \vec{a}^{\,O}_{20} en el instante en que θ = π / 4, así como la posición

del C.I.R.

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Esta página fue modificada por última vez el 11:38, 8 dic 2017. - Esta página ha sido visitada 478 veces. - Aviso legal - Acerca de Laplace