(Página creada con «==Enunciado== Una partícula está recorriendo el eje OX en sentido positivo con una celeridad constante de 25 m/s. En un instante dado (t=0) se detecta un obstáculo en su trayectoria a 50 m por delante de ella. A partir de dicho instante se le aplica a la partícula una desaceleración creciente en el tiempo según la fórmula <math>\,\vec{a}(t)=-Kt\,\vec{\imath}\,\,</math>, donde <math>K\,</math> es una constante de valor igual a 8.00 m/s³. ¿Cuánto ti…»)
 
 
Línea 16: Línea 16:




<center><math>\frac{\mathrm{d}x}{\mathrm{d}t}=v_x(0)-\frac{1}{2}Kt^2\,\,\,\,\,\longrightarrow\,\,\,\,\,\mathrm{d}x=\left[v_x(0)-\frac{1}{2}Kt^2\right]\mathrm{d}t\,\,\,\,\,\longrightarrow\,\,\,\,\,\int_{x(0)}^{x(t)}\!\mathrm{d}x=\int_{0}^{t}\!\left[v_x(0)-\frac{1}{2}Kt^2\right]\mathrm{d}t\,\,\,\,\,\longrightarrow\,\,\,\,\,x(t)=x(0)+v_x(0)t-\frac{1}{6}Kt^3</math></center>
<math>\frac{\mathrm{d}x}{\mathrm{d}t}=v_x(0)-\frac{1}{2}Kt^2\,\,\,\,\,\longrightarrow\,\,\,\,\,\mathrm{d}x=\left[v_x(0)-\frac{1}{2}Kt^2\right]\mathrm{d}t\,\,\,\,\,\longrightarrow\,\,\,\,\,\int_{x(0)}^{x(t)}\!\mathrm{d}x=\int_{0}^{t}\!\left[v_x(0)-\frac{1}{2}Kt^2\right]\mathrm{d}t\,\,\,\,\,\longrightarrow</math>
 
<math>\longrightarrow\,\,\,\,\,x(t)=x(0)+v_x(0)t-\frac{1}{6}Kt^3</math>


==Tiempo que tarda en detenerse==
==Tiempo que tarda en detenerse==

Revisión actual - 19:17 9 ene 2024

Enunciado

Una partícula está recorriendo el eje OX en sentido positivo con una celeridad constante de 25 m/s. En un instante dado (t=0) se detecta un obstáculo en su trayectoria a 50 m por delante de ella. A partir de dicho instante se le aplica a la partícula una desaceleración creciente en el tiempo según la fórmula , donde es una constante de valor igual a 8.00 m/s³. ¿Cuánto tiempo tardará en detenerse la partícula? ¿A qué distancia del obstáculo se detendrá?

Velocidad y posición

Se trata de un movimiento rectilíneo a lo largo del eje OX. Por tanto, podemos escribir:

Considerando por simplicidad que el origen de coordenadas coincide con la posición de la partícula en el instante en que se detecta el obstáculo , conocemos también las condiciones iniciales:

Por tanto, determinar la velocidad y la posición de la partícula para se reduce a integrar la aceleración una y dos veces, respectivamente, entre el instante inicial y un instante genérico:


Tiempo que tarda en detenerse

La partícula se detendrá en el instante en el que se anule su velocidad, es decir:

y sustituyendo los datos numéricos:

Distancia del obstáculo

Para determinar la distancia del obstáculo a la que se detiene la partícula, simplemente hay que evaluar la posición (coordenada ) de la partícula para el instante , y después restársela a la posición en la que se encuentra el obstáculo:

y sustituyendo los datos numéricos: