Enunciado

Un sólido rígido realiza un movimiento helicoidal instantáneo respecto a un triedro de referencia , estando definido su campo de velocidades mediante la siguiente reducción cinemática en el origen de coordenadas :

  1. Calcule la velocidad de deslizamiento del sólido rígido (segundo invariante).
  2. ¿Por cuál de los siguientes puntos pasa el eje instantáneo de rotación y mínimo deslizamiento?

Velocidad de deslizamiento

La velocidad de deslizamiento (segundo invariante) es la proyección de la velocidad de cualquier punto sobre la velocidad angular:

Punto perteneciente al EIRMD. Primer método: cálculo de la velocidad del punto

Utilizando la ecuación del campo de velocidades del sólido rígido, calculamos la velocidad del punto en cada una de las opciones:

Si el punto pertenece al eje instantáneo de rotación y mínimo deslizamiento (EIRMD), la velocidad de dicho punto es necesariamente paralela al vector velocidad angular . Comprobamos que tal cosa sólo ocurre en la opción (c), la cual es por tanto la respuesta correcta:

Punto perteneciente al EIRMD. Segundo método: determinación del EIRMD

Partiendo del conocimiento de la reducción cinemática , es posible determinar el EIRMD del movimiento helicoidal instantáneo. En efecto: aplicando la ecuación vectorial del EIRMD, obtenemos el vector de posición de un punto genérico del EIRMD:

Por tanto, las coordenadas de un punto genérico del EIRMD en el triedro OXYZ de referencia son:

Comparando esta terna paramétrica de coordenadas con las ternas de los cuatro puntos propuestos en el enunciado, deducimos que el único punto es el de la opción (c). En efecto: es el punto del EIRMD correspondiente a .