Enunciado

El plano vertical fijo Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle O_1X_1Y_1\,} (sólido "1") de la figura contiene en todo instante a dos sólidos vinculados entre sí y en movimiento: un disco de radio Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle R\,} (sólido "2"), y una barra de longitud Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle L\,} (sólido "0"). El disco rueda sin deslizar sobre el eje vertical Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle O_1Y_1\,} , avanzando su centro Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle C\,} con velocidad constante Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{v}^{\, C}_{21}(t)=v_0\,\vec{\jmath}_1\,} . Y, como consecuencia, también la barra se mueve, ya que su extremo Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle C\,} está articulado al centro del disco, mientras que su extremo Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle B\,} está articulado a un deslizador que lo obliga a recorrer el eje Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle O_1X_1\,} .

Como parámetro descriptivo de la posición del sistema, se define el ángulo que forma la barra Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle BC\,} con respecto a la vertical (ver figura). Se pide:

  1. Determinar gráficamente la posición de los tres centros instantáneos de rotación: , y Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle I_{01}\,} .
  2. Calcular todas las velocidades angulares en función de la posición, es decir: Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{\omega}_{21}(\theta)\,,} Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{\omega}_{01}(\theta)\,} y Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{\omega}_{20}(\theta)\,} .
  3. Calcular las aceleraciones Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{a}^{\, C}_{01}\,} y (ver Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle A\,} en la figura).

Determinación gráfica de los centros instantáneos de rotación

Se nos indica que el disco (sólido "2") rueda sin deslizar sobre el eje Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle O_1Y_1\,} (sólido "1"). La ausencia de deslizamiento implica que el centro instantáneo de rotación del movimiento {21} coincide con el punto de contacto disco-eje:

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle I_{21}\equiv A }

El extremo Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle C\,} de la barra (sólido "0") se halla articulado al centro del disco (sólido "2"). Por tanto, dicho punto Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle C\,} es un punto fijo (centro permanente de rotación) en el movimiento {20}:

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle I_{20}\equiv C }

Dado que el extremo Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle B\,} de la barra (sólido "0") está obligado a recorrer el eje (sólido "1"), la velocidad Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{v}^{B}_{01}\,} tiene necesariamente la dirección del eje Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle O_1X_1\,} . Trazando la perpendicular a dicha velocidad en el punto Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle B\,} y trazando la recta que pasa por los puntos Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle I_{21}\,} y Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle I_{20}\,} (en aplicación del teorema de los tres centros), hallaremos el punto Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle I_{01}\,} en la intersección de ambas rectas:

(ver Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle I_{01}} en la figura adjunta)

Velocidades angulares en función de la posición

Al tratarse de movimientos planos, todas las velocidades angulares solicitadas son perpendiculares al plano director:

En el movimiento {21}, conocemos la velocidad (dato) del punto Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle C\,} y la velocidad (nula) del punto Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle A\equiv I_{21}\,} . Relacionando ambas velocidades entre sí mediante la ecuación del campo de velocidades del movimiento {21}, deducimos el valor de la correspondiente velocidad angular:

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \left.\begin{array}{l} \vec{v}^{A}_{21}=\vec{0} \\ \\ \vec{v}^{\, C}_{21}=v_0\,\vec{\jmath}_1 \end{array}\right\}\,\,\,\, \vec{v}^{\, C}_{21}=\vec{v}^{A}_{21}+\,\vec{\omega}_{21}\times\overrightarrow{AC}\,\,\,\,\,\Rightarrow\,\,\,\,\, v_0\,\vec{\jmath}_1=\omega_{21}\,\vec{k}_1\times R\,\vec{\imath}_1\,\,\,\,\,\Rightarrow\,\,\,\,\,v_0=\omega_{21}R \,\,\,\,\,\Rightarrow\,\,\,\,\,\omega_{21}=\frac{v_0}{R} }

Por tanto:

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{\omega}_{21}=\frac{v_0}{R}\,\vec{k}_1 }

En cuanto al movimiento {01}, conocemos la velocidad (nula) del punto Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle I_{01}\,} , que ha sido gráficamente determinado pero cuya posición podemos expresar analíticamente mediante simple inspección geométrica de la figura:

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \overrightarrow{O_1I_{01}}=[R+L\,\mathrm{sen}(\theta)]\,\vec{\imath}_1+L\mathrm{cos}(\theta)\,\vec{\jmath}_1 }

Y, por otra parte, aplicando la ley de composición de velocidades en el punto Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle C\equiv I_{20}\,} , deducimos el valor de la velocidad de Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle C\,} en el movimiento {01}:

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{v}^{\ C}_{21}=\underbrace{\vec{v}^{\ C}_{20}}_{=\vec{0}}+\vec{v}^{\ C}_{01}\,\,\,\,\,\Longrightarrow\,\,\,\,\, \vec{v}^{\ C}_{01}=\vec{v}^{\ C}_{21}=v_0\,\vec{\jmath}_1 }

De modo que, relacionando estas dos velocidades entre sí mediante la ecuación del campo de velocidades del movimiento {01}, podemos deducir el valor de la correspondiente velocidad angular:

Por tanto:

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{\omega}_{01}=-\frac{v_0}{L\,\mathrm{sen}(\theta)}\,\vec{k}_1 }

Finalmente, la ley de composición de velocidades angulares permite deducir el valor de la velocidad angular que nos falta:

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{\omega}_{21}=\vec{\omega}_{20}+\vec{\omega}_{01}\,\,\,\,\,\Longrightarrow\,\,\,\,\, \vec{\omega}_{20}=\vec{\omega}_{21}-\vec{\omega}_{01}= \left[\frac{v_0}{R}+\frac{v_0}{L\,\mathrm{sen}(\theta)}\right]\,\vec{k}_1 }

Aceleraciones pedidas

La aceleración Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{a}^{\, C}_{01}\,} se deduce fácilmente a partir de la ley de composición de aceleraciones aplicada al punto Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle C\,} :

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \underbrace{\vec{a}^{\, C}_{21}}_{\displaystyle =\vec{0}}=\underbrace{\vec{a}^{\, C}_{20}}_{\displaystyle =\vec{0}}+\vec{a}^{\, C}_{01}+2\,\vec{\omega}_{01}\!\times\!\underbrace{\vec{v}^{\, C}_{20}}_{\displaystyle =\vec{0}}\,\,\,\,\,\Longrightarrow\,\,\,\,\,\vec{a}^{\, C}_{01}=\vec{0} }

donde se ha tenido en cuenta que Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{v}^{\, C}_{20}\,} y Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{a}^{\, C}_{20}\,} son ambas nulas por ser Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle C\,} un punto fijo (centro permanente de rotación) en el movimiento {20}, y que Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{a}^{\, C}_{21}\,} es nula por ser Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{v}^{\, C}_{21}\,} constante en el tiempo.

Por último, deducimos la aceleración Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{a}^{\, A}_{21}\,} relacionándola con la aceleración Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{a}^{\, C}_{21}\,} mediante la ecuación del campo de aceleraciones del movimiento {21}:

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{a}^{\, A}_{21}=\underbrace{\vec{a}^{\, C}_{21}}_{\displaystyle =\vec{0}}+\underbrace{\vec{\alpha}_{21}}_{\displaystyle =\vec{0}}\times\,\overrightarrow{CA}-|\vec{\omega}_{21}|^2\,\overrightarrow{CA}=-\frac{v_0^2}{R^{\, 2}}(-R\,\vec{\imath}_1)=\frac{v_0^2}{R}\,\vec{\imath}_1 }

donde se ha tenido en cuenta que la aceleración angular Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{\alpha}_{21}\,} es nula por ser la velocidad angular Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{\omega}_{21}\,} constante en el tiempo.