Línea 50: Línea 50:
</table>
</table>
[[Velocidad relativa de dos vagones|Solución]]
[[Velocidad relativa de dos vagones|Solución]]
==Peonza rodante oblicua==
Una peonza está formada por una varilla de longitud <math>\ell=20\,\mathrm{cm}</math> ensartada en un disco de radio <math>R=15\,\mathrm{cm}</math>. Esta peonza se mueve de forma que el extremo O de la varilla está inmóvil mientras el centro G del disco describe un movimiento circular uniforme alrededor del eje OZ con rapidez <math>v_0=48\,\mathrm{cm/s}</math>. El disco rueda sin deslizar sobre el plano OXY, de manera que en todo instante la velocidad del punto de contacto A es nula.
Para este movimiento, determine, en el instante en que A se encuentra sobre el eje OX:
# La velocidad angular del sólido en el movimiento {21}.
# La velocidad del punto B, diametralmente opuesto a A, y del punto P situado en <math>25\vec{k}\,\mathrm{cm}</math>, considerado como punto del sólido.
# La aceleración angular del sólido.
# La aceleración de los puntos A, G, B, O y P, considerados como puntos del sólido.
<center>[[Archivo:Peonza-rodante.png|400px]]</center>
[[Peonza rodante oblicua (CMR)|Solución]]

Revisión del 23:31 22 nov 2023

Rotaciones finitas sucesivas de 90°

Se tiene un sólido situado de tal manera que inicialmente los sistemas de referencia fijo, “1” y ligado, “2”, coinciden.

  1. Supongamos que el sólido se hace girar en primer lugar +90° en torno a y a continuación +90° en torno a . ¿Cuál es la matriz de rotación que permite pasar de las coordenadas (X,Y,Z) en la posición final del sistema ligado a las coordenadas en el sistema fijo (x,y,z)? ¿Cuál es el eje de rotación de la composición? ¿Cuál es el ángulo girado?
  2. ¿Cómo cambian los resultados anteriores si, partiendo de la posición inicial se hace girar en primer lugar +90° en torno a y a continuación +90° en torno a ?
  3. ¿Cómo cambian los resultados anteriores si, partiendo de la posición inicial se hace girar en primer lugar +90° en torno a y a continuación +90° en torno a ?
  4. Si se realizan las dos rotaciones del apartado (a) (1º +90° en torno a ; 2º +90° en torno a ) y a continuación se gira −90° en torno a seguido de −90° en torno a , ¿vuelve el sólido a su posición inicial? Si no es así, ¿cuál es el eje de rotación y el ángulo girado?

Solución

Rotaciones finitas sucesivas

¿Cómo quedan los resultados del problema anterior si los giros no son de +90° sino de ? (recomendable hacer los cálculos con ayuda de un ordenador).

Solución

Composición de dos rotaciones de 90°

Se tiene un sólido situado de tal manera que inicialmente los sistemas de referencia fijo, “1” y ligado, “2”, coinciden.

  1. Supongamos que el sólido se hace girar en primer lugar +90° en torno a y a continuación −90° en torno a un eje paralelo a por . ¿Cuál es el resultado de esta composición de movimientos?
  2. Supongamos que el sólido se hace girar en primer lugar +90° en torno a y a continuación +90° en torno a un eje paralelo a por . ¿Cuál es el resultado de esta composición de movimientos?
  3. Supongamos que el sólido se hace girar en primer lugar +90° en torno a y a continuación −90° en torno a un eje paralelo a por . ¿Cuál es el resultado de esta composición de movimientos?

Solución

Velocidad relativa de dos vagones

Se tienen dos vagonetas A y B (sólidos “2” y “3”), que avanzan por raíles sobre el suelo horizontal (sólido “1”). En un momento dado las vagonetas se mueven paralelamente respecto al suelo con velocidades . El vector de posición relativo entre las dos vagonetas es . Los ejes de los tres sistemas se toman paralelos de forma que los vectores de las respectivas bases son coincidentes en ese instante. Halle las velocidades relativas y en los siguientes casos:

  1. Las vagonetas se mueven por vías rectilíneas paralelas.
  2. La vagoneta B se mueve por una vía circular de radio R, mientras que A se mueve por una vía rectilínea. El instante descrito es el de máximo acercamiento entre las dos vías.
  3. Las dos se mueven por vías circulares concéntricas, de radios R y R+b, respectivamente.
  4. Las dos se mueven por arcos de circunferencia de radio R con centros hacia el mismo lado.
  5. Las dos se mueven por arcos de circunferencia de radio R con centros en lados opuestos.
(1) (2)
(3) (4) (5)

Solución

Peonza rodante oblicua

Una peonza está formada por una varilla de longitud ensartada en un disco de radio . Esta peonza se mueve de forma que el extremo O de la varilla está inmóvil mientras el centro G del disco describe un movimiento circular uniforme alrededor del eje OZ con rapidez . El disco rueda sin deslizar sobre el plano OXY, de manera que en todo instante la velocidad del punto de contacto A es nula. Para este movimiento, determine, en el instante en que A se encuentra sobre el eje OX:

  1. La velocidad angular del sólido en el movimiento {21}.
  2. La velocidad del punto B, diametralmente opuesto a A, y del punto P situado en , considerado como punto del sólido.
  3. La aceleración angular del sólido.
  4. La aceleración de los puntos A, G, B, O y P, considerados como puntos del sólido.

Solución