Entrar Página Discusión Historial Go to the site toolbox

Primera Convocatoria Ordinaria 2015/16 (MR G.I.C.)

De Laplace

1 Aro colgando de una barra que rota

La barra homogénea OA (sólido "0") tiene masa m y longitud L. Está articulada en el punto fijo O y rota de modo que está siempre contenida en el plano OX1Y1. En su extremo A está articulado un aro homogéneo de radio R y masa m (sólido "2"). El sistema está sometido a la acción de la gravedad. Se recomienda utilizar los ángulos {θ,ψ} como coordenadas para resolver el problema.

  1. Determina las reducciones cinemáticas de los movimientos {01}, {21}, {20}.
  2. Calcula las energías cinética y potencial totales del sistema.
  3. Usando las herramientas de la Dinámica Analítica, encuentra las ecuaciones de movimiento.
  4. Se impone el vínculo cinemático \dot{\theta}=\omega_0. Determina el par necesario para imponer dicho vínculo. Supón que en el instante inicial se tiene θ(0) = 0, ψ(0) = 0.
  5. Supongamos que las coordenadas {θ,ψ} son de nuevo libres. Supón que se tiene θ(0) = 0, ψ(0) = 0. En ese instante una percusión \vec{\hat{F}}=[\hat{F}_0,\hat{F}_0,0]_1 actúa sobre el punto A. Determina el estado cinemático del sistema justo después de la percusión.


2 Barra articulada sobre muelle

En el sistema de la figura, la barra delgada homogénea OA (sólido "2"), de masa m y longitud L, está articulada en el punto O. El punto O puede moverse sobre el eje fijo O1Z1, y está conectado a un muelle de constante elástica k y longitud natural L. El muelle siempre permanece vertical. La barra "2" está siempre contenida en el plano O1X0Z0, como se indica en la figura.

  1. Encuentra la reducción cinemática del movimiento {21} en los puntos O y G.
  2. Calcula el momento cinético de la barra "2" en O y G (\vec{L}_O, \vec{L}_G).
  3. Calcula la energía cinética de la barra "2".
  4. Aplicando el T.C.M. y el T.M.C. escribe las ecuaciones de movimiento del sistema.
  5. Escribe todas las integrales primeras del movimiento que puedas encontrar.

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Esta página fue modificada por última vez el 15:30, 12 feb 2016. - Esta página ha sido visitada 1.125 veces. - Aviso legal - Acerca de Laplace