(Página creada con «==Enunciado== Una partícula, inicialmente en reposo en el origen de coordenadas, se mueve con una aceleración creciente en el tiempo según la fórmula: <center><math> \vec{a}(t)=3C t^2\,\vec{\jmath} </math></center> siendo <math>C\,</math> una constante de valor igual a <math>1\,\mathrm{m/s}^4\,</math>. ¿A qué distancia del origen de coordenadas se hallará la partícula en el instante <math>t=2\,\mathrm{s}\,</math>? ==Solución== Conforme a las definiciones de…»)
 
 
Línea 16: Línea 16:
Por tanto, determinar la velocidad y la posición de la partícula para <math>t>0\,</math> se reduce a integrar la aceleración una y dos veces, respectivamente, entre el instante inicial y un instante genérico:
Por tanto, determinar la velocidad y la posición de la partícula para <math>t>0\,</math> se reduce a integrar la aceleración una y dos veces, respectivamente, entre el instante inicial y un instante genérico:
<center><math>
<center><math>
\begin{array}{lllllll}\displaystyle\frac{\mathrm{d}\vec{v}}{\mathrm{d}t}=3C t^2\,\vec{\jmath} & \,\,\,\,\,\longrightarrow\,\,\,\,\, & \mathrm{d}\vec{v}=3\,C t^2\,\mathrm{d}t\,\vec{\jmath} & \,\,\,\,\,\longrightarrow\,\,\,\,\, & \displaystyle\int_{\vec{v}(0)}^{\vec{v}(t)}\!\mathrm{d}\vec{v}=3\,C\left(\displaystyle\int_{0}^{t}\!t^2\,\mathrm{d}t\right)\vec{\jmath} & \,\,\,\,\,\longrightarrow\,\,\,\,\, & \vec{v}(t)=Ct^3\,\vec{\jmath} \\ \\
\begin{array}{lllllll}\displaystyle\frac{\mathrm{d}\vec{v}}{\mathrm{d}t}=3C t^2\,\vec{\jmath} & \longrightarrow & \mathrm{d}\vec{v}=3\,C t^2\,\mathrm{d}t\,\vec{\jmath} & \longrightarrow & \displaystyle\int_{\vec{v}(0)}^{\vec{v}(t)}\!\mathrm{d}\vec{v}=3\,C\left(\displaystyle\int_{0}^{t}\!t^2\,\mathrm{d}t\right)\vec{\jmath} & \longrightarrow & \vec{v}(t)=Ct^3\,\vec{\jmath} \\ \\
\displaystyle\frac{\mathrm{d}\vec{r}}{\mathrm{d}t}=Ct^3\,\vec{\jmath} & \,\,\,\,\,\longrightarrow\,\,\,\,\, & \mathrm{d}\vec{r}=Ct^3\,\mathrm{d}t\,\vec{\jmath} & \,\,\,\,\,\longrightarrow\,\,\,\,\, & \displaystyle\int_{\vec{r}(0)}^{\vec{r}(t)}\!\mathrm{d}\vec{r}=C\left(\displaystyle\int_{0}^{t}\!t^3\,\mathrm{d}t\right)\vec{\jmath} & \,\,\,\,\,\longrightarrow\,\,\,\,\, & \vec{r}(t)=\displaystyle\frac{Ct^4}{4}\,\vec{\jmath}\end{array}
\displaystyle\frac{\mathrm{d}\vec{r}}{\mathrm{d}t}=Ct^3\,\vec{\jmath} & \longrightarrow & \mathrm{d}\vec{r}=Ct^3\,\mathrm{d}t\,\vec{\jmath} & \longrightarrow & \displaystyle\int_{\vec{r}(0)}^{\vec{r}(t)}\!\mathrm{d}\vec{r}=C\left(\displaystyle\int_{0}^{t}\!t^3\,\mathrm{d}t\right)\vec{\jmath} & \longrightarrow & \vec{r}(t)=\displaystyle\frac{Ct^4}{4}\,\vec{\jmath}\end{array}
</math></center>
</math></center>



Revisión actual - 13:27 10 ene 2024

Enunciado

Una partícula, inicialmente en reposo en el origen de coordenadas, se mueve con una aceleración creciente en el tiempo según la fórmula:

siendo una constante de valor igual a . ¿A qué distancia del origen de coordenadas se hallará la partícula en el instante ?

Solución

Conforme a las definiciones de velocidad instantánea y aceleración instantánea, podemos escribir:

Conocemos también las condiciones iniciales de posición y velocidad:

Por tanto, determinar la velocidad y la posición de la partícula para se reduce a integrar la aceleración una y dos veces, respectivamente, entre el instante inicial y un instante genérico:

En el instante , la posición de la partícula es por tanto:

y su distancia al origen de coordenadas en dicho instante es: