(Página creada con «==Reglas de derivación== ;Suma de funciones :<math>\frac{\mathrm{d}\ }{\mathrm{d}x}(u+v) = \frac{\mathrm{d}u}{\mathrm{d}x} + \frac{\mathrm{d}v}{\mathrm{d}x}</math> ;Producto de funciones :<math>\frac{\mathrm{d}\ }{\mathrm{d}x}(uv) = \left(\frac{\mathrm{d}u}{\mathrm{d}x}\right)v + u\left(\frac{\mathrm{d}v}{\mathrm{d}x}\right)</math> Caso particular <math>u = C = \mathrm{cte}</math> :<math>\frac{\mathrm{d}\ }{\mathrm{d}x}(Cv) = C\left(\frac{\mathrm{d}v}{\mathrm{d}x}…»)
 
 
Línea 2: Línea 2:
;Suma de funciones
;Suma de funciones
:<math>\frac{\mathrm{d}\ }{\mathrm{d}x}(u+v) = \frac{\mathrm{d}u}{\mathrm{d}x} + \frac{\mathrm{d}v}{\mathrm{d}x}</math>
:<math>\frac{\mathrm{d}\ }{\mathrm{d}x}(u+v) = \frac{\mathrm{d}u}{\mathrm{d}x} + \frac{\mathrm{d}v}{\mathrm{d}x}</math>
;Producto de funciones
;Producto de funciones
:<math>\frac{\mathrm{d}\ }{\mathrm{d}x}(uv) = \left(\frac{\mathrm{d}u}{\mathrm{d}x}\right)v + u\left(\frac{\mathrm{d}v}{\mathrm{d}x}\right)</math>
:<math>\frac{\mathrm{d}\ }{\mathrm{d}x}(uv) = \left(\frac{\mathrm{d}u}{\mathrm{d}x}\right)v + u\left(\frac{\mathrm{d}v}{\mathrm{d}x}\right)</math>

Revisión actual - 08:58 28 sep 2023

Reglas de derivación

Suma de funciones
Producto de funciones

Caso particular

Regla de la cadena
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \frac{\mathrm{d}v}{\mathrm{d}x}=\frac{\mathrm{d}v}{\mathrm{d}u}\,\frac{\mathrm{d}u}{\mathrm{d}x}}

Caso particular de derivada logarítmica

Caso particular de exponencial de una función

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \frac{\mathrm{d}\ }{\mathrm{d}x}\left(\mathrm{e}^u\right) = \mathrm{e}^u\,\frac{\mathrm{d}u}{\mathrm{d}x}}

Tabla de derivadas

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle f(x)} Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \mathrm{d}f/\mathrm{d}x} Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle f(x)} Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \mathrm{d}f/\mathrm{d}x}
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle C\,} Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle 0\,} Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \ln(x)\,} Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \frac{1}{x}}
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle x\,}

Tabla de primitivas

Más primitivas en la Wikipedia

Series de Taylor

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle -\ln(1-x)=x+\frac{x^2}{2}+\frac{x^3}{3}+\cdots }
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \mathrm{e}^x=1+x+\frac{x^2}{2}+\frac{x^3}{3!}+\cdots }
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle cos(x)=1-\frac{x^2}{2}+\frac{x^4}{4!}+\cdots }
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \mathrm{sen}(x)=x-\frac{x^3}{6}+\frac{x^5}{5!}+\cdots }
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \mathrm{arctg}(x)=x-\frac{x^3}{3}+\frac{x^5}{5}+\cdots }