Línea 37: Línea 37:
Una vez que tenemos dos de las reducciones cinemáticas, podemos hallar la tercera mediante la composición de movimientos. Para la velocidad angular
Una vez que tenemos dos de las reducciones cinemáticas, podemos hallar la tercera mediante la composición de movimientos. Para la velocidad angular


<center><math>\omega_{20}=\omega_{21}+\omega_{10}=\overbrace{\omega_{20}}^{=0}-\omega_{01}=\frac{v_0}{2R}</math></center>
<center><math>\omega_{20}=\omega_{21}+\omega_{10}=\overbrace{\omega_{21}}^{=0}-\omega_{01}=\frac{v_0}{2R}</math></center>


y para la lineal
y para la lineal

Revisión del 15:31 16 ene 2024

Enunciado

El sistema de la figura consta de un disco (sólido “0”), de centro O y radio Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle R} , que rueda sin deslizar sobre el eje horizontal Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle O_1X_1} de la escuadra fija Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle O_1X_1Y_1} (sólido “1”); y de una barra de longitud indefinida (sólido “2”), que se desplaza horizontalmente con velocidad constante Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle v_0} , manteniéndose siempre en contacto tangente con el perímetro del disco (punto Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle A} ) y sin deslizar sobre éste. Se pide:

  1. Reducciones cinemáticas de los movimientos {21}, {01} y {20} en el centro del disco (punto O), es decir: , y .
  2. Aceleración relativa barra-disco del punto de contacto , es decir: .

Reducciones cinemáticas

Movimiento {21}

La barra “2” efectúa un movimiento de traslación respecto al sólido “1”, por lo que la velocidad angular de este movimiento es nula y la velocidad de traslación es la misma para todos los puntos, en particular para el punto O.

      

Movimiento {01}

Al ser el contacto entre el disco y el eje horizontal una rodadura sin deslizamiento, el movimiento relativo es una rotación en torno a este punto. Por ello

La velocidad angular la obtenemos de que podemos hallar la velocidad del punto A, de contacto del disco y la barra, en el movimiento {01}, por ser este contacto también una rodadura sin deslizamiento

La velocidad de este punto cumple igualmente

Igualando las dos expresiones obtenemos la velocidad angular

y la velocidad del punto O

Movimiento {20}

Una vez que tenemos dos de las reducciones cinemáticas, podemos hallar la tercera mediante la composición de movimientos. Para la velocidad angular

y para la lineal

Aceleración

La aceleración de A la podemos hallar mediante la composición de movimientos

de donde, despejando,

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{a}^A_{20}=\vec{a}^A_{21}-\vec{a}^A_{01}-2\omega_{01}\vec{k}\times\vec{v}^A_{20}}

El movimiento {21} del punto A es una traslación a velocidad constante, por lo que su aceleración es nula

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{a}^A_{21}=\frac{\mathrm{d}v_0}{\mathrm{d}t}\vec{\imath}_1 = \vec{0}}

La aceleración en el movimiento {01} no puede calcularse derivando, porque el punto A es una partícula material diferente en cada instante. Aplicamos la reducción en O del campo de aceleraciones, por ser O un punto material perfectamente definido

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{a}^A_{01}=\vec{a}^O_{01}+\alpha_{01}\vec{k}\times\overrightarrow{OA}-\omega_{01}^2\overrightarrow{OA}}

La aceleración de O es nula, por ser el movimiento de este punto rectilíneo y uniforme

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{a}^O_{01}=\frac{\mathrm{d}\ }{\mathrm{d}t}\left(\frac{v_0}{2}\vec{\imath}_1\right) = \vec{0}}

También es nula la aceleración angular, por ser la velocidad angular constante

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \alpha_{01}=\frac{\mathrm{d}\omega_{01}}{\mathrm{d}t} = \frac{\mathrm{d}\ }{\mathrm{d}t}\left(-\frac{v_0}{2R}\right)=0}

Queda solo el último término

El término de Coriolis se anula, por ser el contacto una rodadura sin deslizamiento en ese punto

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle 2\omega_{01}\vec{k}\times\vec{v}^A_{20}=-\frac{v_0}{R}\vec{k}\times\vec{0}=\vec{0}}

lo que nos deja finalmente con

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{a}^A_{20}=-\vec{a}^A_{01}=\frac{v_0^2}{4R}\vec{\jmath}_1}