Tres masas en un triángulo
Un sólido rígido está formado por tres masas: una 5m, situada en O(0,0,0), una 4m, en A(3b,0,0) y una 3m, en B(0,4b,0).
- ¿En qué posición se encuentra el centro de masas del sistema?
- ¿Cuánto vale el tensor de inercia de este sólido respecto a unos ejes paralelos a OX, OY y OZ, por el centro de masas?
- Si el sólido está girando en torno a un eje que pasa por el CM y con velocidad angular Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{\omega}=\Omega(\vec{\imath}+\vec{\jmath}+\vec{k})}
, calcule cuánto valen
- su momento cinético respecto a G.
- su momento cinético respecto a O.
- su energía cinética.
Nota
Todas las velocidades se refieren al movimiento {21}, por lo que se omiten los subíndices.
Centro de masas
La posición del CM es la media ponderada de las posiciones de las tres masas
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \overrightarrow{OG}=\frac{5m\vec{0}+4m(3b\vec{\imath})+3m(4b\vec{\jmath})}{5m+4m+3m}=b(\vec{\imath}+\vec{\jmath})}
Tensor de inercia
Para hallar el tensor de inercia tenemos dos caminos.
- Directamente mediante las posiciones de las tres partículas respecto a los nuevos ejes.
- Hallando primero el tensor respecto a unos ejes por O y posteriormente aplicar el teorema de Steiner.
Veámoslo de las dos formas.
Directamente
La posición de las tres masas respecto al CM es, para O
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \overrightarrow{GO}=-\overrightarrow{OG}= -b(\vec{\imath}+\vec{\jmath})}
para A
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \overrightarrow{GA}=\overrightarrow{OA}-\overrightarrow{OG}=b(2\vec{\imath})-\vec{\jmath})}
y para B
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \overrightarrow{GB}=\overrightarrow{OB}-\overrightarrow{OG}=b(-\vec{\imath})+3\vec{\jmath})}
Aplicamos ahora la definición de tensor de inercia
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \bar{\bar{I}}=\sum_P m_P\begin{pmatrix}y_P^2+z_P^2& -x_Py_P & -x_Pz_P\\ -x_Py_P & x_P^2+z_P^2 & -y_Pz_P \\ -x_P z_P & -y_Pz_P & x_P^2+y_P^2\end{pmatrix}}
queda para la masa de O, de valor 5m
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \bar{\bar{I}}_1 = mb^2\begin{pmatrix}5& -5 & 0\\ -5 &5 & 0 \\ 0 & 0 & 10\end{pmatrix}}
Para la de A, de valor 4m
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \bar{\bar{I}}_2 = mb^2\begin{pmatrix}4& 12 & 0\\ 12 &16 & 0 \\ 0 & 0 & 20\end{pmatrix}}
y para la de C, de valor 3m
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \bar{\bar{I}}_3=mb^2\begin{pmatrix}27& 9 & 0\\ 9 & 3 & 0 \\ 0 & 0 & 30\end{pmatrix}}
Sumando los tres tensores
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \bar{\bar{I}}_G=mb^2\begin{pmatrix}36& 16 & 0\\ 16 & 24 & 0 \\ 0 & 0 & 60\end{pmatrix}}
Este sería el código que lo hace en Mathematica (muy poco optimizado, pero para que se entienda mejor)
J[m_, P_] := m (P . P IdentityMatrix[3] - KroneckerProduct[P, P])
lm = {5 m, 4 m, 3 m}
mT = Sum[lm[[i]], {i, 3}]
OP = {{0, 0, 0}, {3 b, 0, 0}, {0, 4 b, 0}}
OG = Sum[lm[[i]] OP[[i]], {i, 3}]/mT
GP = Table[OP[[i]] - OG, {i, 3}]
IG = Sum[J[lm[[i]], GP[[i]]], {i, 3}]
MatrixForm[IG]
Mediante el teorema de Steiner
Si consideramos las posiciones respecto a los ejes de la figura, los tensores de inercia de cada masa resultan mucho más simples, por estar sobre los ejes.
Para la masa de O, de valor 5m
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \bar{\bar{I}}_1 = mb^2\begin{pmatrix}0& 0 & 0\\ 0 &0 & 0 \\ 0 & 0 & 0\end{pmatrix}}
Para la de A, de valor 4m
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \bar{\bar{I}}_2 = mb^2\begin{pmatrix}0& 0 & 0\\ 0 &36 & 0 \\ 0 & 0 & 36\end{pmatrix}}
y para la de C, de valor 3m
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \bar{\bar{I}}_3=mb^2\begin{pmatrix}48& 0 & 0\\ 0 & 0 & 0 \\ 0 & 0 & 48\end{pmatrix}}
Sumando los tres tensores
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \bar{\bar{I}}_O=mb^2\begin{pmatrix}48& 0 & 0\\ 0 & 36 & 0 \\ 0 & 0 & 84\end{pmatrix}}
Por el teorema de Steiner, este tensor cumple
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \bar{\bar{I}}_O= \bar{\bar{I}}_G+m_T\begin{pmatrix}y_G^2+z_G^2& -x_Gy_G & -x_Gz_G\\ -x_Gy_G & x_G^2+z_G^2 & -y_Gz_G \\ -x_G z_G & -y_Gz_G & x_G^2+y_G^2\end{pmatrix}}
lo que nos da
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle mb^2\begin{pmatrix}48& 0 & 0\\ 0 & 36 & 0 \\ 0 & 0 & 84\end{pmatrix}=\bar{\bar{I}}_G+mb^2\begin{pmatrix}12& -12 & 0\\ -12 & 12 & 0 \\ 0 & 0 & 24\end{pmatrix}}
Despejamos y queda
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \bar{\bar{I}}_G=mb^2\begin{pmatrix}36& 12 & 0\\ 12 & 24 & 0 \\ 0 & 0 & 60\end{pmatrix}}
El código para este cálculo sería
J[m_, P_] := m (P . P IdentityMatrix[3] - KroneckerProduct[P, P])
lm = {5 m, 4 m, 3 m}
mT = Sum[lm[[i]], {i, 3}]
OP = {{0, 0, 0}, {3 b, 0, 0}, {0, 4 b, 0}}
OG = Sum[lm[[i]] OP[[i]], {i, 3}]/mT
IO = Sum[J[lm[[i]], OP[[i]]], {i, 3}]
IG = IO - J[mT, OG]
MatrixForm[IG]
Estado de rotación
Momento cinético respecto a G
El momento cinético se calcula como
lo que nos da
o en forma vectorial
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{L}_G=12mb^2\Omega(4\vec{\imath}+3\vec{\jmath}+5\vec{k})}
Momento cinético respecto a O
Por el teorema de König
Una forma de hallar el momento cinético respecto a O es mediante el teorema de König
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{L}_O=m_T \overrightarrow{OG}\times \vec{v}_G + \vec{L}_G}
siendo la velocidad del CM
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{v}_G=\vec{\omega}\times\overrightarrow{OG}=\Omega (\vec{\imath}+\vec{\jmath}+\vec{k})\times b(\vec{\imath}+\vec{\jmath})=\Omega b(-\vec{\imath}+\vec{\jmath})}
Por tanto, Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{L}_O}
vale
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{L}_O=12m b(\vec{\imath}+\vec{\jmath})\times \Omega b(-\vec{\imath}+\vec{\jmath})+12mb^2\Omega(4\vec{\imath}+3\vec{\jmath}+5\vec{k})=12mb^2\Omega(4\vec{\imath}+3\vec{\jmath}+7\vec{k})}
El código correspondería a añadir, tras las líneas de códigon anteriores
ω = Ω {1, 1, 1}
LG = IG . ω
vG = ω × OG
LO = mT OG × vG + LG
Directamente
En este caso, el punto O es fijo por hallarse en el eje de rotación. Por tanto, es mucho más fácil hallar el momento cinético directamente como
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{L}_O=\bar{\bar{I}}_O\cdot\vec{\omega}}
lo que nos da
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{L}_O=mb^2\begin{pmatrix}48& 0 & 0\\ 0 & 36 & 0 \\ 0 & 0 & 84\end{pmatrix}\cdot \Omega \begin{pmatrix}1 \\ 1\\ 1 \end{pmatrix}=mb^2\Omega \begin{pmatrix}48 \\ 36\\ 84 \end{pmatrix}}
que queda, en forma vectorial
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{L}_O=12mb^2\Omega(4\vec{\imath}+3\vec{\jmath}+7\vec{k})}
Energía cinética
Directamente
De nuevo, por ser O un punto fijo
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle T=\frac{1}{2}\vec{\omega}\cdot\vec{L}_O=\frac{1}{2}\vec{\omega}\cdot\bar{\bar{I}}_O\cdot\vec{\omega}}
lo que nos da
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle T=\frac{1}{2}\Omega(\vec{\imath}+\vec{\jmath}+\vec{k})\cdot 12mb^2\Omega(4\vec{\imath}+3\vec{\jmath}+7\vec{k})=84mb^2\Omega^2}
Por el teorema de König
En general, tanto si O es fijo como si no podemos recurrir al teorema de König
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle T=\frac{1}{2}mT |\vec{v}_G|^2 + \frac{1}{2}\vec{\omega}\cdot\bar{\bar{I}}_G\cdot\vec{\omega}}
siendo la energía cinética de traslación
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle T_T=\frac{1}{2}mT |\vec{v}_G|^2 = 6m(\Omega b)^2(1+1) =12mb^2\Omega^2}
y la de rotación
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle T_R=\frac{1}{2}\vec{\omega}\cdot\bar{\bar{I}}_G\cdot\vec{\omega} = \frac{1}{2}\vec{\omega}\cdot\vec{L}_G=72mb^2\Omega^2}
lo que da el total
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle T= 12mb^2\Omega^2+72mb^2\Omega^2 = 84mb^2\Omega^2\,}