Tres masas en un triángulo

Un sólido rígido está formado por tres masas: una 5m, situada en O(0,0,0), una 4m, en A(3b,0,0) y una 3m, en B(0,4b,0).

  1. ¿En qué posición se encuentra el centro de masas del sistema?
  2. ¿Cuánto vale el tensor de inercia de este sólido respecto a unos ejes paralelos a OX, OY y OZ, por el centro de masas?
  3. Si el sólido está girando en torno a un eje que pasa por el CM y con velocidad angular Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{\omega}=\Omega(\vec{\imath}+\vec{\jmath}+\vec{k})} , calcule cuánto valen
    1. su momento cinético respecto a G.
    2. su momento cinético respecto a O.
    3. su energía cinética.

Nota

Todas las velocidades se refieren al movimiento {21}, por lo que se omiten los subíndices.

Centro de masas

La posición del CM es la media ponderada de las posiciones de las tres masas

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \overrightarrow{OG}=\frac{5m\vec{0}+4m(3b\vec{\imath})+3m(4b\vec{\jmath})}{5m+4m+3m}=b(\vec{\imath}+\vec{\jmath})}

Tensor de inercia

Para hallar el tensor de inercia tenemos dos caminos.

  • Directamente mediante las posiciones de las tres partículas respecto a los nuevos ejes.
  • Hallando primero el tensor respecto a unos ejes por O y posteriormente aplicar el teorema de Steiner.

Veámoslo de las dos formas.

Directamente

La posición de las tres masas respecto al CM es, para O

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \overrightarrow{GO}=-\overrightarrow{OG}= -b(\vec{\imath}+\vec{\jmath})}

para A

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \overrightarrow{GA}=\overrightarrow{OA}-\overrightarrow{OG}=b(2\vec{\imath})-\vec{\jmath})}

y para B

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \overrightarrow{GB}=\overrightarrow{OB}-\overrightarrow{OG}=b(-\vec{\imath})+3\vec{\jmath})}

Aplicamos ahora la definición de tensor de inercia

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \bar{\bar{I}}=\sum_P m_P\begin{pmatrix}y_P^2+z_P^2& -x_Py_P & -x_Pz_P\\ -x_Py_P & x_P^2+z_P^2 & -y_Pz_P \\ -x_P z_P & -y_Pz_P & x_P^2+y_P^2\end{pmatrix}}

queda para la masa de O, de valor 5m

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \bar{\bar{I}}_1 = mb^2\begin{pmatrix}5& -5 & 0\\ -5 &5 & 0 \\ 0 & 0 & 10\end{pmatrix}}

Para la de A, de valor 4m

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \bar{\bar{I}}_2 = mb^2\begin{pmatrix}4& 12 & 0\\ 12 &16 & 0 \\ 0 & 0 & 20\end{pmatrix}}

y para la de C, de valor 3m

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \bar{\bar{I}}_3=mb^2\begin{pmatrix}27& 9 & 0\\ 9 & 3 & 0 \\ 0 & 0 & 30\end{pmatrix}}

Sumando los tres tensores

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \bar{\bar{I}}_G=mb^2\begin{pmatrix}36& 16 & 0\\ 16 & 24 & 0 \\ 0 & 0 & 60\end{pmatrix}}

Este sería el código que lo hace en Mathematica (muy poco optimizado, pero para que se entienda mejor)

J[m_, P_] := m (P . P IdentityMatrix[3] - KroneckerProduct[P, P])

lm = {5 m, 4 m, 3 m}

mT = Sum[lm[[i]], {i, 3}]

OP = {{0, 0, 0}, {3 b, 0, 0}, {0, 4 b, 0}}

OG = Sum[lm[[i]] OP[[i]], {i, 3}]/mT

GP = Table[OP[[i]] - OG, {i, 3}]

IG = Sum[J[lm[[i]], GP[[i]]], {i, 3}]

MatrixForm[IG]

Mediante el teorema de Steiner

Si consideramos las posiciones respecto a los ejes de la figura, los tensores de inercia de cada masa resultan mucho más simples, por estar sobre los ejes.

Para la masa de O, de valor 5m

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \bar{\bar{I}}_1 = mb^2\begin{pmatrix}0& 0 & 0\\ 0 &0 & 0 \\ 0 & 0 & 0\end{pmatrix}}

Para la de A, de valor 4m

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \bar{\bar{I}}_2 = mb^2\begin{pmatrix}0& 0 & 0\\ 0 &36 & 0 \\ 0 & 0 & 36\end{pmatrix}}

y para la de C, de valor 3m

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \bar{\bar{I}}_3=mb^2\begin{pmatrix}48& 0 & 0\\ 0 & 0 & 0 \\ 0 & 0 & 48\end{pmatrix}}

Sumando los tres tensores

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \bar{\bar{I}}_O=mb^2\begin{pmatrix}48& 0 & 0\\ 0 & 36 & 0 \\ 0 & 0 & 84\end{pmatrix}}

Por el teorema de Steiner, este tensor cumple

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \bar{\bar{I}}_O= \bar{\bar{I}}_G+m_T\begin{pmatrix}y_G^2+z_G^2& -x_Gy_G & -x_Gz_G\\ -x_Gy_G & x_G^2+z_G^2 & -y_Gz_G \\ -x_G z_G & -y_Gz_G & x_G^2+y_G^2\end{pmatrix}}

lo que nos da

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle mb^2\begin{pmatrix}48& 0 & 0\\ 0 & 36 & 0 \\ 0 & 0 & 84\end{pmatrix}=\bar{\bar{I}}_G+mb^2\begin{pmatrix}12& -12 & 0\\ -12 & 12 & 0 \\ 0 & 0 & 24\end{pmatrix}}

Despejamos y queda

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \bar{\bar{I}}_G=mb^2\begin{pmatrix}36& 12 & 0\\ 12 & 24 & 0 \\ 0 & 0 & 60\end{pmatrix}}

El código para este cálculo sería

J[m_, P_] := m (P . P IdentityMatrix[3] - KroneckerProduct[P, P])

lm = {5 m, 4 m, 3 m}

mT = Sum[lm[[i]], {i, 3}]

OP = {{0, 0, 0}, {3 b, 0, 0}, {0, 4 b, 0}}

OG = Sum[lm[[i]] OP[[i]], {i, 3}]/mT

IO = Sum[J[lm[[i]], OP[[i]]], {i, 3}]

IG = IO - J[mT, OG]

MatrixForm[IG]

Estado de rotación

Momento cinético respecto a G

El momento cinético se calcula como

lo que nos da

o en forma vectorial

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{L}_G=12mb^2\Omega(4\vec{\imath}+3\vec{\jmath}+5\vec{k})}

Momento cinético respecto a O

Por el teorema de König

Una forma de hallar el momento cinético respecto a O es mediante el teorema de König

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{L}_O=m_T \overrightarrow{OG}\times \vec{v}_G + \vec{L}_G}

siendo la velocidad del CM

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{v}_G=\vec{\omega}\times\overrightarrow{OG}=\Omega (\vec{\imath}+\vec{\jmath}+\vec{k})\times b(\vec{\imath}+\vec{\jmath})=\Omega b(-\vec{\imath}+\vec{\jmath})}

Por tanto, Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{L}_O} vale

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{L}_O=12m b(\vec{\imath}+\vec{\jmath})\times \Omega b(-\vec{\imath}+\vec{\jmath})+12mb^2\Omega(4\vec{\imath}+3\vec{\jmath}+5\vec{k})=12mb^2\Omega(4\vec{\imath}+3\vec{\jmath}+7\vec{k})}

El código correspondería a añadir, tras las líneas de códigon anteriores

ω = Ω {1, 1, 1}

LG = IG . ω

vG = ω × OG

LO = mT OG × vG + LG

Directamente

En este caso, el punto O es fijo por hallarse en el eje de rotación. Por tanto, es mucho más fácil hallar el momento cinético directamente como

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{L}_O=\bar{\bar{I}}_O\cdot\vec{\omega}}

lo que nos da

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{L}_O=mb^2\begin{pmatrix}48& 0 & 0\\ 0 & 36 & 0 \\ 0 & 0 & 84\end{pmatrix}\cdot \Omega \begin{pmatrix}1 \\ 1\\ 1 \end{pmatrix}=mb^2\Omega \begin{pmatrix}48 \\ 36\\ 84 \end{pmatrix}}

que queda, en forma vectorial

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{L}_O=12mb^2\Omega(4\vec{\imath}+3\vec{\jmath}+7\vec{k})}

Energía cinética

Directamente

De nuevo, por ser O un punto fijo

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle T=\frac{1}{2}\vec{\omega}\cdot\vec{L}_O=\frac{1}{2}\vec{\omega}\cdot\bar{\bar{I}}_O\cdot\vec{\omega}}

lo que nos da

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle T=\frac{1}{2}\Omega(\vec{\imath}+\vec{\jmath}+\vec{k})\cdot 12mb^2\Omega(4\vec{\imath}+3\vec{\jmath}+7\vec{k})=84mb^2\Omega^2}

Por el teorema de König

En general, tanto si O es fijo como si no podemos recurrir al teorema de König

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle T=\frac{1}{2}mT |\vec{v}_G|^2 + \frac{1}{2}\vec{\omega}\cdot\bar{\bar{I}}_G\cdot\vec{\omega}}

siendo la energía cinética de traslación

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle T_T=\frac{1}{2}mT |\vec{v}_G|^2 = 6m(\Omega b)^2(1+1) =12mb^2\Omega^2}

y la de rotación

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle T_R=\frac{1}{2}\vec{\omega}\cdot\bar{\bar{I}}_G\cdot\vec{\omega} = \frac{1}{2}\vec{\omega}\cdot\vec{L}_G=72mb^2\Omega^2}

lo que da el total

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle T= 12mb^2\Omega^2+72mb^2\Omega^2 = 84mb^2\Omega^2\,}