Entrar Página Discusión Historial Go to the site toolbox

Tabla de fórmulas de trigonometría

De Laplace

Contenido

1 Ángulos

1.1 Definición

Archivo:definicion-angulo.png

1.2 Complementario y suplementario

Complementario

Archivo:complementario.png

Suplementario

Archivo:suplementario.png

1.3 Opuestos por el vértice y alternos

Archivo:opuestos-vertice.png

1.4 Rotación de ejes

Mismo origen

Archivo:ejes-girados-01.png

Diferente origen

Archivo:ejes-girados-02.png

2 Definiciones

2.1 Geométrica

Archivo:triangulo-rectangulo.png
Coseno
\cos(x)=\frac{a}{r}
Seno
\mathrm{sen}(x) = \frac{b}{r}

2.2 Analítica

El argumento x debe estar expresado en radianes

\cos(x) = 1 -\frac{x^2}{2}+\frac{x^4}{4!}-\frac{x^6}{6!}+\cdots
\mathrm{sen}(x) = x -\frac{x^3}{6}+\frac{x^5}{5!}-\frac{x^7}{7!}+\cdots

2.3 Exponenciales complejas

(\mathrm{j}=\sqrt{-1})
\cos(x) = \frac{\mathrm{e}^{\mathrm{j}x}+\mathrm{e}^{-\mathrm{j}x}}{2}
\mathrm{sen}(x) = \frac{\mathrm{e}^{\mathrm{j}x}-\mathrm{e}^{-\mathrm{j}x}}{2\mathrm{j}}

2.4 Funciones adicionales

Archivo:triangulo-rectangulo.png
Tangente
\mathrm{tg}(x) = \frac{\mathrm{sen}(x)}{\cos(x)} = \frac{b}{a}
Cotangente
\mathrm{cotg}(x) = \frac{\cos(x)}{\mathrm{sen}(x)} = \frac{1}{\mathrm{tg}(x)}=\frac{a}{b}
Secante
\mathrm{sec}(x) = \frac{1}{\cos(x)}=\frac{r}{a}
Cosecante
\mathrm{cosec}(x) = \frac{1}{\mathrm{sen}(x)}=\frac{r}{b}

2.5 En la circunferencia unidad

Archivo:razones-trigonometricas.png

3 Gráficas desde −π a π

Seno y coseno
Archivo:graf-seno-coseno.png
Tangente y cotangente
Archivo:graf-tg-cotg.png
Secante y cosecante
Archivo:graf-sec-cosec.png

4 Relaciones entre funciones

4.1 Identidades básicas

\cos^2(x) + \mathrm{sen}^2(x) = 1\,
1 + \mathrm{tg}^2(x) = \mathrm{sec}^2(x)=\frac{1}{\cos^2(x)}\,
\mathrm{cotg}^2(x) +1= \mathrm{cosec}^2(x)=\frac{1}{\mathrm{sen}^2(x)}\,

4.2 En función de la tangente

u = \mathrm{tg}(x)\,
\mathrm{sen}(x) = \frac{u}{\sqrt{1+u^2}}
\cos(x) = \frac{1}{\sqrt{1+u^2}}

4.3 En función de la tangente del ángulo mitad

u = \mathrm{tg}\left(\frac{x}{2}\right)\,
\mathrm{sen}(x) = \frac{2u}{1+u^2}
\cos(x) = \frac{1-u^2}{1+u^2}
\mathrm{tg}(x) = \frac{2u}{1-u^2}

5 Tabla de valores particulares

° rad sen cos tg
0\, 0\, \sqrt{0}/2 = 0 1\, 0\,
30\, \pi/6\, \sqrt{1}/2 = 1/2\, \sqrt{3}/2 1/\sqrt{3}
45\, \pi/4\, \sqrt{2}/2 \sqrt{2}/2 1\,
60\, \pi/3\, \sqrt{3}/2 1/2\, \sqrt{3}
90\, \pi/2\, \sqrt{4}/2=1 0\, \infty
Ángulo complementario
\mathrm{sen}\left(\frac{\pi}{2}-x\right)=\cos(x)\qquad \cos\left(\frac{\pi}{2}-x\right)=\mathrm{sen}(x)
Archivo:razones-complementario.png
Ángulo suplementario
\mathrm{sen}\left(\pi-x\right)=\mathrm{sen}(x)\qquad \cos\left(\pi-x\right)=-\cos(x)
Archivo:razones-suplementario.png
Giro de un cuadrante
\mathrm{sen}\left(\frac{\pi}{2}+x\right)=\cos(x)\qquad \cos\left(\frac{\pi}{2}+x\right)=-\mathrm{sen}(x)
Archivo:razones-2o-cuadrante.png
Giro de dos cuadrantes
\mathrm{sen}\left(\pi+x\right)=-\mathrm{sen}(x)\qquad \cos\left(\pi+x\right)=-\cos(x)
Archivo:razones-3o-cuadrante.png
Cambio de signo
\mathrm{sen}\left(-x\right)=-\mathrm{sen}(x)\qquad \cos\left(-x\right)=\cos(x)
Archivo:razones-4o-cuadrante.png

6 Suma y diferencia de ángulos

Seno
\mathrm{sen}(x+y)=\mathrm{sen}(x)\cos(y)+\cos(x)\mathrm{sen}(y)\,
\mathrm{sen}(x-y)=\mathrm{sen}(x)\cos(y)-\cos(x)\mathrm{sen}(y)\,
Coseno
\cos(x+y)=\cos(x)\cos(y)-\mathrm{sen}(x)\mathrm{sen}(y)\,
\cos(x-y)=\cos(x)\cos(y)+\mathrm{sen}(x)\mathrm{sen}(y)\,
Tangente
\mathrm{tg}(x+y)=\frac{\mathrm{tg}(x)+\mathrm{tg}(y)}{1-\mathrm{tg}(x)\mathrm{tg}(y)}
\mathrm{tg}(x-y)=\frac{\mathrm{tg}(x)-\mathrm{tg}(y)}{1+\mathrm{tg}(x)\mathrm{tg}(y)}

7 Ángulo doble y ángulo mitad

7.1 Ángulo doble

Seno
\mathrm{sen}(2x)=2\,\mathrm{sen}(x)\cos(x)\,
Coseno
\cos(2x)=\cos^2(x)-\mathrm{sen}^2(x)\,
Tangente
\mathrm{tg}(2x)=\frac{2\,\mathrm{tg}(x)}{1-\mathrm{tg}^2(x)}

7.2 Ángulo mitad

Seno
\mathrm{sen}\left(\frac{x}{2}\right)=\sqrt{\frac{1-\cos(x)}{2}}
Coseno
\cos\left(\frac{x}{2}\right)=\sqrt{\frac{1+\cos(x)}{2}}
Tangente
\mathrm{tg}\left(\frac{x}{2}\right)=\sqrt{\frac{1-\cos(x)}{1+\cos(x)}}=\frac{\mathrm{sen}(x)}{1+\cos(x)}

8 Sumas en productos

\mathrm{sen}(x)+\mathrm{sen}(y) = 2\,\mathrm{sen}\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)
\mathrm{sen}(x)-\mathrm{sen}(y) = 2\,\mathrm{sen}\left(\frac{x-y}{2}\right)\cos\left(\frac{x+y}{2}\right)
\cos(x)+\cos(y) = 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)
\cos(x)-\cos(y) = -2\,\mathrm{sen}\left(\frac{x+y}{2}\right)\mathrm{sen}\left(\frac{x-y}{2}\right)

9 Derivadas y primitivas

El argumento debe estar obligatoriamente en radianes

9.1 Derivadas

\frac{\mathrm{d}\ }{\mathrm{d}x}(\mathrm{sen}(x)) = \cos(x)
\frac{\mathrm{d}\ }{\mathrm{d}x}(\cos(x)) = -\,\mathrm{sen}(x)
\frac{\mathrm{d}\ }{\mathrm{d}x}(\mathrm{tg}(x)) = \frac{1}{\cos^2(x)}=1+\mathrm{tg}^2(x)

9.2 Primitivas

\int \mathrm{sen}(x)\mathrm{d}x = -\cos(x)+C
\int \cos(x)\mathrm{d}x = \mathrm{sen}(x)+C
\int \mathrm{tg}(x)\mathrm{d}x = -\ln(\cos(x))+C

10 Fórmula de Euler

Fórmula general
\mathrm{e}^{\mathrm{j}x}=\cos(x)+\mathrm{j}\,\mathrm{sen}(x)\qquad (\mathrm{j}=\sqrt{-1})
Casos particulares
\mathrm{e}^{\mathrm{j}\pi/2} = \mathrm{j}\,
\mathrm{e}^{\mathrm{j}\pi} = -1\,
\mathrm{e}^{2\pi\mathrm{j}} = 1\,

11 Teoremas del seno y del coseno

11.1 Teorema del seno

Archivo:teorema-seno.png

\frac{a}{\mathrm{sen}(\alpha)}=\frac{b}{\mathrm{sen}(\beta)}=\frac{c}{\mathrm{sen}(\gamma)}=2R

(R: radio de la circunferencia circunscrita)

11.2 Teorema del coseno

Misma notación que en el teorema del seno

a^2 = b^2 + c^2-2bc\cos(\alpha)\,

y las correspondientes a los otros dos ángulos.

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Esta página fue modificada por última vez el 15:36, 28 sep 2012. - Esta página ha sido visitada 69.115 veces. - Aviso legal - Acerca de Laplace