Enunciado
Una partícula describe un movimiento circular alrededor del origen de forma que en un cierto instante su posición la da el vector
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{r}=(16\vec{\imath}+15\vec{\jmath} -12\vec{k})\,\mathrm{cm}}
La velocidad angular de la partícula en el mismo instante es
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{\omega}=(-12\vec{\imath}+20\vec{\jmath}+9\vec{k})\frac{\mathrm{rad}}{\mathrm{s}}}
En el mismo instante la aceleración angular tiene sentido opuesto a la velocidad angular y módulo 0.50 rad/s². Para este instante, calcule:
- La velocidad lineal y la rapidez de la partícula.
- La aceleración tangencial y la aceleración normal, tanto escalares como vectores.
- Los vectores tangente y normal.
- El radio de curvatura y el centro de curvatura.
Velocidad y rapidez
En lo que sigue, en todos los cálculos se usará el SI, por lo que escribiremos la posición como
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{r}=(0.16\vec{\imath}+0.15\vec{\jmath} -0.12\vec{k})\,\mathrm{m}}
Velocidad lineal
Para una partícula que describe un movimiento de rotación alrededor del origen, su velocidad instantánea la da
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{v}=\vec{\omega}\times\vec{r}=\left|\begin{matrix} \vec{\imath} & \vec{\jmath} & \vec{k} \\ -12 & 20 & 9 \\ 0.16 & 0.15 & -0.12\end{matrix}\right|=(-3.75\vec{\imath}+5.00\vec{k})\,\frac{\mathrm{m}}{\mathrm{s}}}
Rapidez
La rapidez o celeridad es igual al módulo de la velocidad
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \left|\vec{v}\right| = \sqrt{3.75^2+5.00^2}=6.25\,\frac{\mathrm{m}}{\mathrm{s}}}
Esta rapidez es igual a
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \left|\vec{v}\right| = \left|\vec{\omega}\right|\left|\vec{r}\right|}
donde
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \left|\vec{\omega}\right|=\sqrt{12^2+20^2+9^2}=25\,\frac{\mathrm{rad}}{\mathrm{s}}}
y
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \left|\vec{r}\right|=\sqrt{0.16^2+0.15^2+0.12^2}=0.25\mathrm{m}}
Componentes intrínsecas de la aceleración
La aceleración de una partícula en un movimiento circular alrededor del origen lo da la expresión vectorial
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{a}=\vec{\alpha}\times\vec{r}+\vec{\omega}\times\vec{v}}
donde el primer término es la aceleración tangencial
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{a}_t=\vec{\alpha}\times\vec{r}}
y el segundo la normal
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{a}_n=\vec{\omega}\times\vec{v}}
Aceleración tangencial
A partir de su expresión vectorial
Para calcular la aceleración tangencial necesitamos antes la aceleración angular. Por tratarse de un movimiento circular, la aceleración angular es paralela a la velocidad angular
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{\alpha}=\alpha\,\vec{u}_\omega = \alpha\frac{\vec{\omega}}{|\vec{\omega}|}}
Puesto que se nos dice que su módulo es 0.50rad/s² y su sentido opuesto al de la velocidad angular, el vector aceleración angular vale
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{\alpha}=-0.50\frac{-12\vec{\imath}+20\vec{\jmath}+9\vec{k}}{25}=\left(0.24\vec{\imath}-0.40\vec{\jmath}-0.18\vec{k}\right)\frac{\mathrm{rad}}{\mathrm{s}^2}}
Esto nos da la aceleración tangencial
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{a}_t=\vec{\alpha}\times\vec{r}=\left(0.075\vec{\imath}+0.10\vec{k}\right)\frac{\mathrm{m}}{\mathrm{s}^2}}
En forma escalar, proyectamos sobre la velocidad
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle a_t=\frac{\vec{a}_t\cdot\vec{v}}{|\vec{v}|}=-0.125\,\frac{\mathrm{m}}{\mathrm{s}^2}}
A partir de su módulo, dirección y sentido
Esta aceleración tangencial también puede calcularse observando que:
- Es tangente a la velocidad, es decir, es paralela a
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{T}=\frac{\vec{v}}{|\vec{v}|}=-\frac{3.75\vec{\imath}+5\vec{k}}{6.25}=-0.6\vec{\imath}-0.8\vec{k}}
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \left|\vec{a}_t\right|=\left|\vec{\alpha}\right|\left|\vec{r}\right|=0.5\times 0.25=0.125\,\frac{\mathrm{m}}{\mathrm{s}^2}}
- Puesto que la aceleración angular Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{\alpha}}
es opuesta a la velocidad angular, la aceleración tangencial es opuesta a la velocidad.
Por tanto
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{a}_t = -|\vec{a}_t|\vec{T}=-0.125\left(-0.6\vec{\imath}-0.8\vec{k}\right)=\left(0.075\vec{\imath}+0.10\vec{k}\right)\frac{\mathrm{m}}{\mathrm{s}^2}}
Aceleración normal
A partir de su expresión vectorial
La parte normal de la aceleración en un movimiento circular es
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{a}_n=\vec{\omega}\times\vec{v}}
lo que en este caso da
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{a}_n=\left|\begin{matrix}\vec{\imath} & \vec{\jmath} & \vec{k} \\ -12 & 20 & 9 \\ -3.75 & 0.00 & 5.00\end{matrix}\right| = \left(-100\vec{\imath}-93.75\vec{\jmath}-75\vec{k}\right)\frac{\mathrm{m}}{\mathrm{s}^2}}
y en forma escalar
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle a_n=\left|\vec{a}_n\right| = 156.25\,\frac{\mathrm{m}}{\mathrm{s}^2}}
A partir de su módulo, dirección y sentido
La aceleración normal en este movimiento puede también calcularse observando que:
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle |\vec{a}_n| = |\vec{\omega}|^2|\vec{r}|=25^2\times 0.25= 156.25\,\frac{\mathrm{m}}{\mathrm{s}^2}}
- Su dirección es radial, es decir en la de
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{u}_r=\frac{\vec{r}}{|\vec{r}|}=0.64\vec{\imath}+0.60\vec{\jmath}-0.48\vec{k}}
- Su sentido es hacia adentro de la circunferencia, según el vector normal
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{N}=-\vec{u}_r = -0.64\vec{\imath}-0.60\vec{\jmath}+0.48\vec{k}}
Todo esto da
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{a}_t=156.25\left(-0.64\vec{\imath}-0.60\vec{\jmath}+0.48\vec{k}\right)=\left(-100\vec{\imath}-93.75\vec{\jmath}-75\vec{k}\right)\frac{\mathrm{m}}{\mathrm{s}^2}}
y la forma escalar
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle a_n=\left|\vec{a}_n\right| = 156.25\,\frac{\mathrm{m}}{\mathrm{s}^2}}
Vectores tangente y normal
Vector tangente
El vector tangente es el unitario en la dirección y sentido de la velocidad
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{T}=\frac{\vec{v}}{|\vec{v}|}=-\frac{3.75\vec{\imath}+5\vec{k}}{6.25}=-0.6\vec{\imath}-0.8\vec{k}}
Vector normal
El vector normal es el unitario en la dirección y sentido de la aceleración normal
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{N}=\frac{\vec{a}_n}{|\vec{a}_n|}= -0.64\vec{\imath}-0.60\vec{\jmath}+0.48\vec{k}}
que en el caso de un movimiento circular alrededor del origen es radial y hacia el centro de la circunferencia
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{N}=-\frac{\vec{r}}{|\vec{r}|}}
Radio y centro de curvatura
El radio de curvatura puede hallarse por la fórmula
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle R=\frac{|\vec{v}|^2}{a_n}}
pero en el caso de un movimiento circular alrededor del origen es simplemente la distancia a éste
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle R=|\vec{r}| = 0.25\,\mathrm{m}}
El centro de curvatura se puede hallar por
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{r}_c=\vec{r}+R\vec{N}}
pero en el caso de un movimiento circular el centro de curvatura es el propio centro de la circunferencia, que en este caso es
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://en.wikipedia.org/api/rest_v1/»:): {\displaystyle \vec{r}_c=\vec{0}}