Enunciado

Una partícula está sometida exclusivamente a la acción de la gravedad. Si se lanza con velocidad en dirección vertical hacia arriba desde un punto de altura . ¿Cuál es su velocidad cuando llega al suelo? Si en vez de lanzarse hacia arriba se lanza hacia abajo, con velocidad , ¿llegará con una rapidez mayor?

Solución

Este problema puede resolverse de diferentes maneras.

La partícula sigue un movimiento uniformemente acelerado en el que la aceleración es la de la gravedad. Las ecuaciones para la posición y la velocidad en función del tiempo son

La condición de impacto la da el que la posición llegue a . Esto conduce a una ecuación de segundo grado para

donde hemos descartado la solución con el signo negativo, ya que conduce a un tiempo menor que cero. Llevando esto a la ecuación de la velocidad queda

Resulta una velocidad negativa porque la partícula está descendiendo. La rapidez de impacto será

Podemos ahorrarnos la resolución de la ecuación de segundo grado observando si elevamos al cuadrado la ecuación de la velocidad

pero lo que está entre paréntesis es , así que llegamos a la igualdad

que particularizada para el momento de impacto nos da

Este segundo procedimiento es un caso particular de la fórmula

que para el caso de una aceleración constante equivale al cociente entre incrementos

cuyo resultado es inmediato

Vemos que el resultado es independiente del signo de . Por tanto, si la piedra es lanzada hacia arriba en vez de hacia abajo, el resultado es el mismo. Eso sí, la piedra que va hacia arriba tarda más en llegar al suelo.