Problemas del boletín

Dos barras en V con apoyos

el Principio de los Trabajos Virtuales, determina las reacciones horizontal y vertical en el punto para la estructura de la figura. La masa de las barras es despreciable. Calcula el valor numeŕico para los valores , , , .

Barra articulada colgando de muelle

Una barra de longitud esta articulada en su extremo . En el otro extremo (punto ) se conecta un muelle de constante elástica y longitud natural nula. El otro extremo del muelle se coloca en un punto fijo sobre el eje .

  1. Determina el valor del ángulo para la posición de equilibrio.
  2. Calcula la fuerza en la dirección del eje sobre el punto en la situación de equilibrio.
  3. Supongamos que liberamos el punto , de modo que puede deslizar por el eje sin rozamiento. Encuentra la configuración de equilibrio en este caso.
  4. ¿Como se podría resolver el problema de equilibrio si incluimos rozamiento en el contacto de con el eje ?


Otros problemas

Equilibrio de armadura con muelle

En el sistema de la figura las barras tienen longitud y masa cada una. La barra "2" está articulada en el punto fijo , mientras que el extremo de la barra "0" puede deslizar sin rozamiento sobre la superficie vertical. El muelle que conecta los puntos y tiene constante elástica y longitud natural nula. El muelle se mantiene siempre vertical. La gravedad actúa como se indica en la figura.

  1. Calcula la energía potencial del sistema.
  2. Suponiendo que el muelle se ajusta de modo que , determina los valores de para los que hay equilibrio mecánico. Discute la estabilidad de estas posiciones de equilibrio.
  3. Si se aplica una fuerza sobre el punto , con , determina el nuevo valor de para que haya equilibrio mecánico.

Equilibrio de barra con muelle

Una barra de longitud está articulada en su punto central en el punto fijo . El extremo se conecta al punto fijo por un muelle de constante elástica y longitud natural nula. Una fuerza , con , se aplica en el punto . No se tiene en cuenta la fuerza de la gravedad.

  1. Usando el Principio de los Trabajos Virtuales (PTV) (o el de las potencias virtuales, PPV) determina el valor de equilibrio del ángulo .
  2. Si el ángulo es tal que y , determina, usando el Principio de Liberación y el PTV (o el PPV), las componentes de la fuerza de reacción vincular en (en la base de los ejes de la figura)