Una placa cuadrada de masa y lado se apoya en una pared vertical rugosa con coeficiente
de rozamiento estático . Una fuerza empuja el bloque contra la pared.
El módulo de la fuerza es y forma un ángulo con el eje . La gravedad
actúa como se indica en la figura. El ángulo verifica
Dibuja el diagrama de cuerpo libre de la placa.
Calcula el valor de las fuerzas que actúan sobre la placa en condiciones de equilibrio estático.
¿Que condiciones debe cumplir para que la placa no deslice?
¿Que condiciones debe cumplir para que la placa no vuelque respecto a la pared?
¿Que condiciones debe cumplir para que la placa ni deslice ni vuelque respecto a la pared?
Solución
Diagrama de fuerzas
La figura de la derecha muestra las fuerzas que actúan sobre la placa: la fuerza aplicada , el peso , la fuerza vincular normal y la fuerza de rozamiento . Expresamos estas fuerzas en el sistema de ejes de la figura
Indicamos a la derecha el punto donde se aplican estas fuerzas. Todas ellas son vectores deslizantes, por
lo que se pueden deslizar sobre sus respectivas rectas soporte.
Situación de equilibrio estático
Para que un sólido rígido esté en equilibrio estático deben cumplirse dos condiciones
Es decir, que la suma vectorial de fuerzas que actúan sobre el sólido se anule y que el momento de fuerzas
neto respecto a un punto cualquiera que actúen sobre el sólido también se anule.
La condición sobre la suma de fuerzas proporciona dos ecuaciones
Elegimos el punto de la figura para calcular los momentos
Los momentos son
Obtenemos la ecuación
Tenemos tres incógnitas: para tres ecuaciones. Resolviendo el sistema obtenemos
Análisis del deslizamiento
Para que no deslice debe cumplirse
Hemos usado que . Tenemos que considerar dos posibles situaciones:
Entonces se tiene y la condición queda
En este caso la fuerza de rozamiento apunta hacia arriba e impide que la placa deslice hacia abajo.
Entonces se tiene y la condición queda
En este caso la fuerza de rozamiento apunta hacia abajo e impide que la placa deslice hacia arriba.
Resumiendo las dos condiciones, para que no haya deslizamiento debe ocurrir
Análisis del vuelco
Para que la placa no vuelque debe ocurrir que
La condición de la izquierda es
La condición de la derecha es
Es decir, para que no vuelque debe ocurrir
Condición para que ni vuelque ni deslice
Para que ocurra esto deben cumplirse a la vez las condiciones de no deslizamiento y no vuelco.
La figura de la derecha muestra los intervalos de valores de para los que hay equilibrio
frente a vuelco. Para que se cumplan las dos cosas a la vez debe ocurrir