Una partícula se mueve sobre un aro de modo que su velocidad angular respecto al
aro es . A su vez, el aro tiene un movimiento
de traslación, de modo que su centro se mueve sobre el eje con rapidez
constante . La gravedad actúa como se indica en la figura. En el instante
inicial el centro del aro coincidía con el punto y la partícula estaba sobre
el eje . Se cumple la condición .
Encuentra la expresión de los vectores posición y velocidad de la partícula en cualquier instante de tiempo.
Encuentra la fuerza que el aro ejerce sobre la partícula durante el movimiento, así como la potencia que aporta. ¿El contacto es liso? Razona la respuesta.
Calcula las componentes intrínsecas de la aceleración, así como el radio de curvatura de la trayectoria de la partícula, en el instante en que la partícula ha dado una vuelta completa al aro, empezando a contar desde .
Solución
Vector de posición y velocidad
El vector de posición de la partícula puede escribir
El centro del aro realiza un movimiento uniforme rectilíneo. En el centro coincidía con el origen . Entonces
El vector es
El enunciado nos dice que , constante. En el instante inicial la partícula estaba sobre el eje . Entonces
El vector de posición queda
Obtenemos la velocidad derivando el vector de posición respecto del tiempo
Fuerza que ejerce el aro
La partícula está sometida a la fuerza del aro, , y la de la gravedad. Aplicando la Segunda Ley de Newton tenemos
Derivamos la velocidad respecto del tiempo para calcular la aceleración
Entonces
La potencia transmitida por esta fuerza a la partícula es
Esta potencia no es nula, pero eso no implica que el vínculo sea liso. Para que esto
ocurra es necesario que la fuerza que ejerce el aro sobre la partícula sea perpendicular
al propio aro en todo instante. En este caso eso implica que debe ocurrir, en todo instante de tiempo,
Si hacemos el producto vectorial tenemos
Por tanto el vínculo no es liso.
Componentes intrínsecas cuando ha dado una vuelta
El instante de tiempo para el que la partícula da una vuelta completa es
En ese instante el ángulo es
La velocidad y aceleración de la partícula son
El módulo de la velocidad es
La aceleración tangencial es
La aceleración normal es
Y el radio de curvatura es
Errores comunes encontrados en la corrección
La partícula no hace un movimiento circular. El movimiento es una composición de un movimiento circular uniforme (la partícula sobre el aro) y un movimiento de traslación uniforme (el aro sobre el eje ). No se pueden aplicar las fórmulas del movimiento circular uniforme.
No puede suponerse a priori que la fuerza que ejerce el aro sobre la partícula es perpendicular a aquel, porque no se dice que el contacto sea liso. De hecho se pregunta esto.