El sistema de la figura está constituido por tres sólidos rígidos: la escuadra fija (sólido "1"); una placa cuadrada (sólido "0") que se traslada con velocidad constante y cuyo lado inferior está completamente en contacto con el eje ; y un disco (sólido "2"), de centro y radio , que rota con velocidad angular constante , y que en todo instante mantiene contacto puntual con el eje (punto ) y con la placa cuadrada que lo empuja (punto ).
¿Cuánto vale la velocidad instantánea ?
¿Y la velocidad instantánea ?
¿Dónde se halla situado el centro instantáneo de rotación ?
Velocidad instantánea del punto A en el movimiento {21}
Dado que la placa cuadrada se traslada con velocidad constante y el disco se mantiene siempre en contacto puntual con ella y con el eje , es evidente que el centro del disco realizará un movimiento rectilíneo y uniforme con esa misma velocidad:
Como también conocemos la velocidad angular del disco , podemos determinar la velocidad instantánea aplicando la ecuación del campo de velocidades correspondiente:
El hecho de que sea no nula (si ) significa que existe deslizamiento entre el disco y el eje .
Velocidad instantánea del punto B en el movimiento {20}
Aplicando otra vez la ecuación del campo de velocidades del movimiento {21}, podemos obtener la velocidad instantánea :
Y aplicando la ley de composición de velocidades en el punto , determinamos la velocidad instantánea :
El hecho de que no sea nula significa que existe deslizamiento entre el disco y la placa cuadrada.
Centro instantáneo de rotación del movimiento {20}
Para determinar la posición del centro instantáneo de rotación , podemos aplicar el procedimiento analítico.
La ley de composición de velocidades angulares nos permite calcular la velocidad angular del movimiento {20}:
donde se ha tenido en cuenta que el movimiento {01} es una traslación y, por tanto, la velocidad angular es nula.
Entonces, la posición del centro instantáneo de rotación respecto al punto se determina mediante la fórmula deducida en la teoría:
Pero a una distancia a la derecha del punto se encuentra el centro del disco. Por tanto, concluimos que:
A la misma conclusión se llega calculando la velocidad del punto en el movimiento {20} mediante la ley de composición de velocidades:
En realidad, el centro del disco mantiene una posición constante respecto a la placa cuadrada y, por tanto, es un punto fijo o centro permanente de rotación en el movimiento {20}.