Enunciado

Sean las rectas , que pasa por los puntos y , y que pasa por y (todas las unidades en el SI). Empleando el álgebra vectorial, determine la distancia entre estas dos rectas.

Solución

La distancia entre dos rectas es la correspondiente a la que hay entre los puntos más próximos de una y de otra. Estos dos puntos se encuentran sobre la perpendicular común a ambas rectas.

Se trata entonces de hallar la distancia entre dos puntos y tales que pertenece a , pertenece a y es ortogonal a los vectores directores de ambas rectas.

Si pertenece a la recta , se cumple

y si pertenece a

El vector de posición relativo entre ambos puntos será

Este vector debe ser ortogonal tanto al vector como al vector y por tanto será paralelo al producto vectorial de ambos

La distancia entre las rectas será el módulo de este vector

Por tanto, solo necesitamos hallar el parámetro . Igualando las dos expresiones para el vector

Multiplicando escalarmente por nos queda simplemente

y por tanto la distancia que buscamos es

Nótese que el resultado final no requiere localizar los puntos y sino que hemos llegado a una expresión para la distancia que solo depende de los cuatro puntos dados.

Sustituyendo los valores tenemos

                

Hallando los productos vectoriales y mixto

                

por lo que la distancia entre las rectas es