Enunciado

Sea Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle B_1=\{\vec{v}_1,\vec{v}_2,\vec{v}_3\}} una base vectorial arbitraria. Sean Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \{\vec{w}_1,\vec{w}_2,\vec{w}_3\}} tres vectores definidos por

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{w}_1=\frac{\vec{v}_2\times\vec{v}_3}{\Delta}}     Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{w}_2=\frac{\vec{v}_3\times\vec{v}_1}{\Delta}}     Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{w}_3=\frac{\vec{v}_1\times\vec{v}_2}{\Delta}}     Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \Delta =\vec{v}_1\cdot(\vec{v}_2\times\vec{v}_3)}
1. Demuestre que el conjunto Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle B_2=\{\vec{w}_1,\vec{w}_2,\vec{w}_3\}} es también una base (llamada base dual de Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle B_1} ). ¿Cuánto vale el producto mixto de sus vectores?
2. Pruebe que se cumple
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{v}_i\cdot\vec{w}_k=\begin{cases} 1 & i = k \\ 0 & i\neq k\end{cases}}
3. Demuestre que las componentes de un vector en la base Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle B_1} pueden calcularse proyectando sobre la base Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle B_2} , esto es, si
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{F} = F_1\vec{v}_1 + F_2\vec{v}_2 + F_3\vec{v}_3}
la componente k viene dada por
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle F_k = \vec{F}\cdot\vec{w}_k}
4. Halle la base dual de la base
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle B_1 =\{\vec{\imath},\vec{\imath}+\vec{\jmath},\vec{\imath}+\vec{\jmath}+\vec{k}\}}
5. Calcule las componentes del vector
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{F} = 2\vec{\imath}-3\vec{\jmath}+\vec{k}}
en las bases del apartado anterior.

Carácter de base

En el espacio de tridimensional ordinario, cualquier conjunto de tres vectores linealmente independientes constituye una base.

Para demostrar la independencia lineal basta probar que el producto mixto de los tres vectores es no nulo. Por tanto debemos hallar

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle P = \vec{w}_1\cdot(\vec{w}_2\times\vec{w}_3)}

Sustituyendo las definiciones de cada uno de los vectores

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle P = \frac{(\vec{v}_2\times\vec{v}_3)\cdot\left((\vec{v}_3\times\vec{v}_1)\times (\vec{v}_1\times\vec{v}_2)\right)}{\Delta^3}}

Para el triple producto vectorial tenemos, aplicando las propiedades del doble producto vectorial

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle (\vec{v}_3\times\vec{v}_1)\times (\vec{v}_1\times\vec{v}_2) = \left((\vec{v}_3\times\vec{v}_1)\cdot\vec{v}_2\right)\vec{v}_1-\overbrace{((\vec{v}_3\times\vec{v}_1)\cdot\vec{v}_1)}^{=0}\vec{v}_2= \Delta\,\vec{v}_1}

y por tanto el producto mixto de los tres vectores vale

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle P = \frac{(\vec{v}_2\times\vec{v}_3)\cdot\vec{v}_1}{\Delta^2} = \frac{1}{\Delta}}

Por tanto, si Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle B_1} es una base, Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle B_2} también lo es y el producto mixto de los vectores de Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle B_2} es el inverso de los de .

Ortogonalidad

Los vectores de la base no son ortogonales entre sí, como tampoco lo son los de la base . sin embargo, los de una de las bases son ortogonales a los de la otra (y viceversa).

Dada la simetría de la definición de los vectores de nos basta con probarlo para el primero de sus vectores. Multiplicándolo por cada uno de los vectores de tenemos, para el primero

para el segundo y el tercero, aplicando que el producto vectorial es ortogonal a los dos vectores que lo forman

    

Si se opera con o con el resultado es análogo.

Componentes de un vector

La ortogonalidad entre las bases duales permite hallar las componentes de un vector en una base a partir de las proyecciones sobre la otra.

Supongamos un vector que conocemos y que es expresable como combinación lineal de la base

aunque estas componentes son desconocidas por ahora y es lo que nos gustaría calcular.

Para hallar las componentes individuales en esta base, podríamos multiplicar escalarmente por la propia base. Pero dado que esta base no es ortonormal, lo que obtenemos de este modo es un sistema de tres ecuaciones con tres incógnitas que, aunque es fácil de resolver, requiere bastantes operaciones.

Si en lugar de multiplicar por los vectores de la base lo hacemos por los de la base obtenemos en cambio

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \begin{array}{rcccl}\vec{F}\cdot\vec{w}_1 &=&F_1\overbrace{\vec{v}_1\cdot\vec{w}_1}^{=1}+F_2\overbrace{\vec{v}_2\cdot\vec{w}_1}^{=0}+F_3\overbrace{\vec{v}_3\cdot\vec{w}_1}^{=0} &= & F_1\\ \vec{F}\cdot\vec{w}_2 & =& F_1\overbrace{\vec{v}_1\cdot\vec{w}_2}^{=0}+F_2\overbrace{\vec{v}_2\cdot\vec{w}_2}^{=1}+F_3\overbrace{\vec{v}_3\cdot\vec{w}_2}^{=0} & = & F_2\\\vec{F}\cdot\vec{w}_3 & = & F_1\overbrace{\vec{v}_1\cdot\vec{w}_3}^{=0}+F_2\overbrace{\vec{v}_2\cdot\vec{w}_3}^{=0}+F_3\overbrace{\vec{v}_3\cdot\vec{w}_3}^{=1} & = & F_3\end{array}}

Por tanto, multiplicando escalarmente por los vectores de la base dual obtenemos directamente las componentes en la base original.

Dada la simetría entre las bases, el procedimiento funciona también en sentido contrario.

Hay que remarcar que no conocemos Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle F_i} de antemano (si no, el procedimiento sería superfluo). La idea es que conocemos Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{F}} a partir de su módulo, dirección y sentido, o mediante sus componentes en la base canónica Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \{\vec{\imath},\vec{\jmath},\vec{k}\}} , o puede ser un vector incógnita. Al ser el producto escalar una cantidad independiente de la base que se emplee para calcularlo, podemos hallar los diferentes productos expresando ambos vectores en la base canónica y el resultado es la componente que deseamos calcular.

Caso particular

Tenemos la base Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle B_1} formada por los vectores

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{v}_1=\vec{\imath}\qquad\qquad\vec{v}_2=\vec{\imath}+\vec{\jmath}\qquad\qquad\vec{v}_3=\vec{\imath}+\vec{\jmath}+\vec{k}}

El producto mixto de estos tres vectores vale

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \Delta = (\vec{v}_1\times\vec{v}_2)\cdot\vec{v}_3 = \left(\vec{\imath}\times(\vec{\imath}+\vec{\jmath})\right)\cdot(\vec{\imath}+\vec{\jmath}+\vec{k}) = \vec{k}\cdot(\vec{\imath}+\vec{\jmath}+\vec{k}) = 1}

y los diferentes vectores de la base dual son

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{w}_1 = \frac{(\vec{\imath}+\vec{\jmath})\times(\vec{\imath}+\vec{\jmath}+\vec{k})}{1}=\left|\begin{matrix}\vec{\imath} & \vec{\jmath} & \vec{k} \\ 1 & 1 & 0 \\ 1 & 1 & 1\end{matrix}\right| = \vec{\imath}-\vec{\jmath}}     Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{w}_2 = \frac{(\vec{\imath}+\vec{\jmath}+\vec{k})\times\vec{\imath}}{1}= \vec{\jmath}-\vec{k}}     Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{w}_3 = \frac{\vec{\imath}\times(\vec{\imath}+\vec{\jmath})}{1}= \vec{k}}

Ejemplo de cálculo de componentes

Conocemos el vector Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{F}} , expresado en la base canónica como

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{F} = 2\vec{\imath}-3\vec{\jmath}+\vec{k}}

y queremos hallar las componentes en las bases Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle B_1} y Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle B_2} del apartado anterior. Para hallar las componentes en la base Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle B_1} multiplicamos por los vectores de la base Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle B_2}

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle F_1 = \vec{F}\cdot\vec{w}_1 = (2\vec{\imath}-3\vec{\jmath}+\vec{k})\cdot(\vec{\imath}-\vec{\jmath}) = 5}     Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle F_2 = \vec{F}\cdot\vec{w}_2 = (2\vec{\imath}-3\vec{\jmath}+\vec{k})\cdot(\vec{\jmath}-\vec{k}) = -4}     Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle F_3 = \vec{F}\cdot\vec{w}_3 = (2\vec{\imath}-3\vec{\jmath}+\vec{k})\cdot\vec{k} = 1}

y por tanto

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{F}=5\vec{v}_1 -4\vec{v}_2 +\vec{v}_3}

Si queremos hallar las componentes en la base Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle B_2} , multiplicamos escalarmente por la base Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle B_1}

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle F_{1'} = \vec{F}\cdot\vec{v}_1 = (2\vec{\imath}-3\vec{\jmath}+\vec{k})\cdot(\vec{\imath}) = 2}     Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle F_{2'} = \vec{F}\cdot\vec{v}_2 = (2\vec{\imath}-3\vec{\jmath}+\vec{k})\cdot(\vec{\imath}+\vec{\jmath}) = -1}     Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle F_{3'} = \vec{F}\cdot\vec{v}_3 = (2\vec{\imath}-3\vec{\jmath}+\vec{k})\cdot(\vec{\imath}+\vec{\jmath}+\vec{k}) = 0}

lo que nos deja con la combinación lineal

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{F} = 2\vec{w}_1-\vec{w}_2}

Desarrollando cada vector de cada base en la base canónica podemos comprobar que estos resultados son correctos.