El sistema de la figura consta de una partícula de masa , un
muelle de constane elástica y elongación natural nula, y una
cuerda de longitud . El punto de anclaje del muelle y de
sujección de la cuerda están separados por una distancia .
Determina la expresión que da la elongación del muelle en función del ángulo y la longitud .
Encuentra el valor del ángulo en la posición de equilibrio.
Solución
Elongación del muelle
Aplicamos el teorema del coseno al triángulo OPA. La longitud de los lados AO y AP es , y el ángulo entre ellos es . Llamando a la elongación del muelle (lado OP) tenemos
Valor de equilibrio del ángulo
Las fuerza que actúan en el punto P son el peso de la masa m , la fuerza del muelle y la tensión del hilo PA . La suma de las tres fuerzas tiene que anularse. En el sistema de ejes de la figura estas fuerzas son
La condición de equilibrio es
Igualando componente a componente tenemos
Para encontrar la expresión del ángulo multiplicamos la primera ecuación por , la segunda por y las sumamos. Con eso se obtiene
Podemos observar que si el muelle es muy fuerte ( muy grande), el ángulo tiende a cero, lo cual es razonable.