Enunciado

Sean Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle A} y Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle B} dos puntos diametralmente opuestos en una circunferencia c. Sea Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle P} otro punto de la misma circunferencia. Demuestre que los vectores Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \overrightarrow{AP}} y son ortogonales.

Inversamente, sean , y tres puntos tales que . Sea Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle C} el punto medio entre Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle A} y Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle B} . Pruebe que Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle |\overrightarrow{CP}| = |\overrightarrow{CA}|} .

Solución

Para ver que son ortogonales calculamos el producto escalar de los dos vectores.

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \overrightarrow{AP}\cdot\overrightarrow{BP}=(\overrightarrow{AC}+\overrightarrow{CP})\cdot(\overrightarrow{BC}+\overrightarrow{CP})}

Desarrollando en esta expresión

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \overrightarrow{AP}\cdot\overrightarrow{BP}=\overrightarrow{AC}\cdot\overrightarrow{BC}+\overrightarrow{CP}\cdot(\overrightarrow{AC}+\overrightarrow{BC})+\overrightarrow{CP}\cdot\overrightarrow{CP}}

Ahora bien, por ser puntos diametralmente opuestos, Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \overrightarrow{AC}} y Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \overrightarrow{BC}} son vectores del mismo módulo Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle R} , misma dirección y sentido contrario, por lo que

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \overrightarrow{AC}+\overrightarrow{BC} = \vec{0}}     Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \overrightarrow{AC}\cdot\overrightarrow{BC}=-\overrightarrow{AC}\cdot\overrightarrow{AC}=-|\overrightarrow{AC}|^2}

lo que nos lleva a

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \overrightarrow{AP}\cdot\overrightarrow{BP} = -|\overrightarrow{AC}|^2 + 0+|\overrightarrow{CP}|^2}

Puesto que A y P se encuentran sobre la circunferencia, equidistan del punto C:

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle |\overrightarrow{AC}|=R}     Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle |\overrightarrow{CP}|=R}

y por tanto

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \overrightarrow{AP}\cdot\overrightarrow{BP} = -R^2 + R^2 = 0}

El producto escalar es nulo y los vectores son, por tanto, ortogonales.

El resultado es independiente del punto Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle P} , siempre que se encuentre sobre la circunferencia. A esta construcción se la denomina arco capaz.

Para el proceso inverso, se trata de ver que la situación es la misma, aunque la figura esté girada. Tenemos dos vectores Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \overrightarrow{AP}} y Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \overrightarrow{BP}} de los que sabemos que son ortogonales, esto es

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \overrightarrow{AP}\cdot\overrightarrow{BP}=0}

Tenemos el punto C, que es el punto medio de A y B y por tanto verifica

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \overrightarrow{BC}=-\overrightarrow{AC}=-\frac{\overrightarrow{AB}}{2}}

Se trata de demostrar que

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle |\overrightarrow{AC}| \stackrel{?}{=} |\overrightarrow{CP}|}

La demostración del enunciado recíproco es completamente análoga a la anterior. Operando exactamente como antes llegamos de nuevo a la igualdad

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \overrightarrow{AP}\cdot\overrightarrow{BP} = -|\overrightarrow{AC}|^2+|\overrightarrow{CP}|^2}

siendo ahora el dato que el primer miembro es nulo y por tanto

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle 0 = -|\overrightarrow{AC}|^2+|\overrightarrow{CP}|^2}  ⇒ Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle |\overrightarrow{CP}|=|\overrightarrow{AC}|=\frac{|\overrightarrow{AB}|}{2}}

y por tanto el punto C se encuentra siempre a la misma distancia de P, siendo esta distancia igual a la mitad de la distancia entre A y B.

Esta construcción es útil en Mecánica. Imaginemos una escalera apoyada sobre una pared y el suelo. Cuando la escalera resbala, deslizándose sobre la pared y el suelo, ¿qué trayectoria describe el punto medio de la escalera? En este caso P es la esquina y A y B son los extremos de la escalera. C es su punto medio. Si L es la longitud de la escalera, este resultado prueba que Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle |\overrightarrow{PC}| = L/2} y por tanto el punto C describe un arco de circunferencia.