Entrar Página Discusión Historial Go to the site toolbox

Problemas de Movimiento plano (MR G.I.C.)

De Laplace

(Diferencias entre revisiones)
(Página creada con '=Problemas del boletín= == Aro con deslizador == right Sea un aro de centro <math>C</math> y rad…')
(Movimiento de barra apoyada en planos no ortogonales)
Línea 32: Línea 32:
# Si el extremo <math>A</math> realiza un movimiento rectilíneo uniforme con velocidad <math>v_0</math>, obtenga el vector rotación <math>\vec{\omega}_{21}</math> y su derivada temporal <math>\vec{\alpha}_{21}</math>, en función de la posición de la barra.
# Si el extremo <math>A</math> realiza un movimiento rectilíneo uniforme con velocidad <math>v_0</math>, obtenga el vector rotación <math>\vec{\omega}_{21}</math> y su derivada temporal <math>\vec{\alpha}_{21}</math>, en función de la posición de la barra.
# En las condiciones del apartado anterior, obtenga la expresión de la velocidad y la aceleración del extremo <math>B</math>.
# En las condiciones del apartado anterior, obtenga la expresión de la velocidad y la aceleración del extremo <math>B</math>.
 +
 +
= Otros problemas =
 +
 +
==[[ Disco apoyado en una placa y una pared (G.I.A.) | Disco apoyado en una placa y una pared]]==
 +
[[Imagen:FI_gIA_disco_sobre_cuad.gif|right]]
 +
El sistema mecánico de la figura está compuesto por los siguientes sólidos rígidos:
 +
# Sólido "1": plano fijo <math>O_1X_1Y_1</math>.
 +
# Sólido "3": placa cuadrada, de lado <math>L</math>, que desliza sobre el eje <math>O_1X_1</math>, manteniendo su lado inferior completo en permanente contacto con él.
 +
# Sólido "2": disco, de centro en <math>C</math> y radio <math>R</math> que, en todo instante, rueda sin deslizar sobre el eje <math>O_1Y_1</math> en el punto de contacto <math>B</math>, a la vez que rueda y desliza sobre la placa cuadrada en el punto de contacto <math>A</math>.
 +
# Sólido "0": sistema de ejes <math>AX_0Y_0</math>, definido de tal modo que el eje <math>AY_0</math> contiene permanentemente al centro <math>C</math> del disco, mientras que el eje <math>AX_0</math> es tangente a dicho disco. 
 +
 +
En el instante considerado en la figura
 +
# determina gráficamente la posición de los C.I.R. <math>I_{21}</math>, <math>I_{20}</math>, <math>I_{03}</math>, <math>I_{23}</math>, <math>I_{01}</math>.
 +
# Utilizando como parámetro el ángulo <math>\theta</math> del dibujo (ángulo que forma el eje <math>AX_0</math> con respecto al lado superior de la placa cuadrada), y teniendo presentes las leyes de composición de velocidades y de velocidades angulares aplicadas a:
 +
<center>
 +
<math>
 +
      \{21\} \equiv \{20\}+\{03\}+\{31\}
 +
</math>
 +
</center>
 +
calcula las reducciones cinemáticas en <math>C</math> de los movimientos {20}, {03}, {31} y {21}:
 +
 +
==[[ Barra horizontal sobre un disco (G.I.A.) | Barra horizontal sobre un disco]]==
 +
[[Imagen:barra_sobre_disco.gif |right]]
 +
El sistema de la figura consta de un disco (sólido "0"), de centro <math>O</math> y radio <math>R</math>, que rueda sin deslizar sobre el eje horizontal <math>O_1X_1</math> del triedro fijo <math>O_1X_1Y_1</math> (sólido "1"); y de una barra de longitud indefinida (sólido "2"), que se desplaza horizontalmente con velocidad constante <math>v_0</math>, manteniéndose siempre en contacto tangente con el perímetro del disco (punto <math>A</math>) y sin deslizar sobre éste. Halla:
 +
# Las reducciones cinemáticas de los movimientos {21}, {01} y {20} en el centro del disco (punto <math>O</math>), es decir: <math>{\vec{\omega}_{21};\vec{v}_{21}^O}</math>, <math>{\vec{\omega}_{01};\vec{v}_{01}^O}</math> y <math>{\vec{\omega}_{20};\vec{v}_{20}^O}</math>.
 +
# La aceleración relativa barra-disco del punto de contacto <math>A</math>, es decir, <math>\vec{a}_{20}^A</math>.
 +
 +
==[[ Partícula moviéndose radialmente sobre el radio de un disco (G.I.A.) | Partícula moviéndose radialmente sobre el radio de un disco]]==
 +
 +
[[Imagen:F1_GIA_bola_ranura_enunciado.png|right]]
 +
 +
Una partícula <math>P</math> recorre con velocidad constante <math>v_0</math> el diámetro de un disco de radio <math>R</math> (sólido "0"). A su vez, el disco, contenido en todo instante en el plano  fijo <math>OX_1Y_1</math> (sólido "1") rueda sin deslizar sobre el eje <math>OX_1</math>, de tal modo que su centro <math>C</math> avanza con velocidad <math>\vec{v}_{01}^C=v_0\,\vec{\imath}_1</math>. 
 +
 +
Asociando al disco el triedro solidario <math>CX_0Y_0</math> (sólido "0"), y
 +
definiendo un triedro auxilar <math>PX_2Y_2</math> (sólido "2") cuyos ejes
 +
<math>PX_2</math> y <math>PY_2</math> tienen las mismas direcciones que los ejes <math>CX_0</math> y
 +
<math>CY_0</math>, respectivamente; determina, en función de los datos del
 +
problema (<math>R</math> y <math>v_0</math>) y de las coordenadas polares que se definen en
 +
la figura (<math>\rho</math> y <math>\theta</math>):
 +
# La velocidad absoluta (<math>\vec{v}_{21}^P</math>) y la aceleración absoluta (<math>\vec{a}_{21}^P</math>) de la partícula <math>P</math>.
 +
# La posición del C.I.R. del movimiento {21} (analíticamente).
 +
'''Nota:''' Se recomienda el uso de la base vectorial asociada al triedro "0" para resolver el ejercicio.
 +
 +
==[[ Disco articulado con una varilla (G.I.A.) | Disco articulado con una varilla]]==
 +
[[Imagen:FI_gia_varilla_articulada_en_disco_y_barra.gif|right]]
 +
 +
El mecanismo de la figura está formado por un disco (sólido "0"), de radio <math>R</math>; y por una varilla <math>OA</math> (sólido "2"), de longitud <math>2R</math>, articulada en su extremo <math>O</math> al centro del disco. El disco rueda sin deslizar sobre la recta fija (sólido "1") de ecuación <math>y_1=-R</math>, mientras que el extremo <math>A</math> de la varilla está obligado a deslizar sobre el eje <math>O_1Y_1</math>.  Sabiendo que el mecanismo se mueve conforme a la ley horaria <math>\theta(t)=\omega t</math> (donde <math>\omega</math> es una constante conocida), se pide:
 +
# Los vectores de posición, <math>\overrightarrow{O_1A}=\vec{r}_{21}^A(t)</math>; velocidad, <math>\vec{v}_{21}^A(t)</math>; y aceleración <math>\vec{a}_{21}^A(t)</math>, del movimiento absoluto del extremo <math>A</math> de la varilla. ¿Qué tipo de movimiento describe dicho punto?
 +
# Reducciones cinemáticas (vectores velocidad angular y velocidad de un punto) de los movimientos {21}, {01} y {20}.
 +
# Determinación gráfica y analítica de la posición del C.I.R. del movimiento {21}.
 +
 +
==[[ Movimiento_plano_de_disco,_barra_y_cuadrado | Movimientos planos de disco, barra y cuadrado]]==
 +
 +
El sistema de la figura está formado por un disco de radio <math>R</math> (sólido &ldquo;0&rdquo;), que rueda sin deslizar sobre el eje fijo <math>OX_1</math>, desplazándose su centro <math>C</math> con velocidad constante <math>v_0</math>, respecto del sistema de referencia fijo <math>OX_1Y_1</math>. Una barra de longitud <math>8R</math> (sólido &ldquo;2&rdquo;), tiene un extremo articulado en <math>C</math> y está obligada a pasar por el punto fijo <math>O</math>. El otro extremo de la barra (<math>A</math>) se encuentra siempre de una acanaladura practicada en el lado de un cuadrado (sólido &ldquo;3&rdquo;) que desliza sobre el eje <math>OX_1</math>.
 +
 +
[[Archivo:disco_barra_cuadrado_peq.gif|right]]
 +
 +
# Describa las reducciones cinemáticas de los movimientos en función de los datos del enunciado y de la variable geométrica <math>\theta</math>.
 +
# Para una posición arbitraria del sistema, dada por el ángulo <math>\theta</math>, determine gráfica o analíticamente -y de manera razonada-, las posiciones de los C.I.R. de todos los movimientos relativos en el sistema.
 +
# Obtenga las posiciones en las que el cuadrado se detiene (respecto del sólido fijo) y calcule el valor de la aceleración absoluta del cuadrado (<math>\mathbf{a}_{31}^A</math>) en dicha posición.
 +
# Calcule las componentes intrínsecas de la velocidad y la aceleración absolutas del extremo <math>A</math> de la barra cuando el sistema se halla en la posición dada por <math>\theta=\pi/2</math>.
 +
 +
==[[ Aplicación:Disco_empujando_una_varilla_articulada_en_él | Disco con varilla articulada]]==
 +
[[Archivo:disco_con_varilla_articulada.gif|right]]
 +
Un disco de radio <math>R</math> (sólido "0"), se mueve contenido siempre en el mismo plano vertical <math>OXY</math>.
 +
El centro <math>C</math> del disco realiza un movimiento rectilíneo uniforme con velocidad <math>v_0</math> respecto del plano horizontal fijo (sólido "1"),
 +
sobre el que rueda sin deslizar. Un barra rígida de longitud <math>4R</math> (sólido "2"), contenida también en <math>OXYZ</math>, tiene su extremo <math>A</math>
 +
articulado en un punto del perímetro del disco, mientras que su extremo <math>B</math> se desliza sobre el plano horizontal.
 +
#Determina la posición de los C.I.R. en las cuatro posiciones indicadas en la figura.
 +
#Explica qué tipo de movimiento realiza la barra en cada uno de los instantes correspondientes a dichas posiciones.
 +
 +
==[[ Dos_discos_y_barra_rodando_sin_deslizar | Barra sobre dos discos que ruedan sin deslizar]]==
 +
 +
Sendos discos de radios radios <math>2R</math> y <math>R</math> (sólidos &ldquo;0&rdquo; y &ldquo;2&rdquo;, respectivamente) se encuentran siempre contenidos en el mismo plano y en contacto puntual sobre el sólido fijo &ldquo;1&rdquo;. Además, hay una barra rígida (sólido &ldquo;3&rdquo;), también contenida en el plano de los discos y en contacto puntual con éstos. El sistema se mueve de manera que los discos &ldquo;0&rdquo; y &ldquo;2&rdquo; ruedan sin deslizar de manera simultánea sobre los sólidos &ldquo;1&rdquo; y &ldquo;3&rdquo;.
 +
[[Archivo:barra_sobre_discos.gif|right]]
 +
# Determine los C.I.R. de los diferentes movimientos relativos en el sistema descrito. ¿Cómo es el movimiento instantáneo de la barra &ldquo;3&rdquo; respecto del sólido fijo &ldquo;1&rdquo;?
 +
# Suponiendo que en el movimiento del disco de mayor radio respecto del sólido fijo la velocidad de su centro <math>C</math> es un vector constante de valor conocido <math>\mathbf{v}_0</math>, determine las reducciones cinemáticas de los movimientos <math>\{01\}</math>, <math>\{31\}</math> y <math>\{21\}</math>.
 +
# Determine la ley horaria que sigue la distancia <math>\displaystyle\Delta x</math> entre los puntos de contacto de los discos con el sólido fijo. Supóngase que en el instante inicial esta distancia es <math>3R</math>.
 +
# Determine la reducción cinemática del movimiento relativo del disco pequeño respecto del grande, <math>\{20\}</math>. Calcule la aceleración instantánea del centro <math>D</math> en dicho movimiento.
 +
 +
==[[ Disco_arrastrando_una_varilla | Disco que arrastra una varilla]]==
 +
 +
En el sistema de la figura los tres sólidos realizan un movimiento plano cuando el disco de radio <math>R</math> (sólido &ldquo;0&rdquo;) rueda sin deslizar sobre el sólido &ldquo;1&rdquo;. El centro del disco, <math>C</math>, se desplaza con una velocidad <math>\mathbf{v}_C=v(t)\mathbf{i}_1</math>. La barra de longitud <math>3R</math> (sólido &ldquo;2&rdquo;) tiene su extremo <math>C</math> articulado en el centro del disco, mientras que se apoya en el borde <math>O</math> del sólido &ldquo;1&rdquo;.[[Archivo:disco_arrastra_varilla.gif|right]]
 +
 +
# Determine gráficamente la posición de los C.I.R. de los movimientos {21}, {20} y {01}.
 +
# En el instante en que la distancia entre los puntos <math>O</math> y <math>B</math> es igual a <math>R</math>, la velocidad del punto <math>C</math> es  <math>\mathbf{v}_C=v_0\ \mathbf{i}_1</math>. Calcule las reducciones cinemáticas de los tres movimientos en el punto <math>C</math>.
 +
# Exprese el vector de posición del punto <math>A</math> en el sistema &ldquo;1&rdquo;, <math>\mathbf{r}_{21}^A</math>, en función de un ángulo <math>\beta</math> arbitrario.
 +
# Si <math>\dot{\beta}=-\Omega</math>, con <math>\Omega</math> constante y positiva, calcule <math>\mathbf{v}_{21}^A(t)</math> y <math>\mathbf{a}_{21}^A(t)</math> para todo instante de tiempo, en función de <math>\beta</math>, <math>\Omega</math> y <math>R</math>.
 +
 +
==[[Movimientos_Planos_de_Manivela_y_Disco,_F1_GIA_(Sept,_2012)|Movimientos planos de manivela y disco]]==
 +
[[Archivo:P2_2aconv_11_12_0.gif|right]]El sistema de la figura está constituido por un plano vertical fijo <math>OX_1Y_1</math> (sólido &ldquo;1&rdquo;) que en todo instante contiene a otros dos sólidos en movimiento: un disco de radio <math>R</math> y centro <math>C</math> (sólido &ldquo;2&rdquo;), que rueda sin deslizar sobre el eje horizontal <math>OX_1</math>, y una manivela ranurada <math>OA</math> (sólido &ldquo;0&rdquo;) que es obligada a girar con velocidad angular constante <math>\omega</math> alrededor de un eje permanente de rotación que pasa por el punto <math>O</math> y es perpendicular al plano fijo definido como sólido &ldquo;1&rdquo; (eje <math>OZ_1</math>). Los movimientos de ambos sólidos se hayan vinculados entre sí porque el centro <math>C</math> del disco está obligado a deslizar en todo instante a lo largo de la ranura de la manivela. Considerando el movimiento <math>\{20\}</math> como el movimiento problema, se pide:
 +
# Determinar el C.I.R. de dicho movimiento (<math>I_{20}</math>), haciendo uso de procedimientos graficos.
 +
# Utilizando como parámetro geométrico el ángulo <math>\theta</math> indicado en la figura, obtener la reducción cinemática del movimiento <math>\{20\}</math> en el punto <math>C</math>, <math>\{\vec{\omega}_{20} (\theta), \vec{v}_{20}^C (\theta)\}</math>.
 +
# Caracterizar el movimiento <math>\{20\}</math> en el instante en que <math>\theta=\pi/2</math>, indicando de forma razonada si se trata de una situación de: (a) rotación instantánea; (b) traslación instantánea; (c) movimiento helicoidal tangente, o (d) reposo instantáneo.
 +
 +
==[[Ejercicio de movimiento plano, Enero 2014 (F1 GIA)|Disco rodando sobre una barra que rota]]==
 +
[[Imagen:F1_GIA_disco_sobre_barra_rotando_enunciado.png|right]]
 +
Una barra de longitud indefinida (sólido "0") se mueve siempre contenida en un plano fijo <math> \Pi_1\equiv OX_1Y_1</math> (sólido "1"). En el punto fijo  <math>O </math> del plano <math>\Pi_1 </math> está articulado uno de los extremos de la barra, la cuál se mueve de manera que el ángulo que forma con el eje <math>OX_1 </math> varía linealmente con el tiempo, según la ley horaria <math>\theta(t) =\omega t  </math>. Un disco de radio <math>R </math> (sólido "2"), también siempre contenido en el plano <math>OX_1Y_1 </math>, rueda sin deslizar sobre la barra "0". Respecto de un sistema de referencia <math>OX_0Y_0 </math> solidario con la barra "0", el centro <math>C </math> del disco realiza un movimiento rectilíneo uniforme de velocidad  <math>v_0 </math>. En el instante inicial <math>(t=0) </math>, el centro del disco se halla en el eje <math>OY_1 </math>.
 +
#Obtenga los elementos de la reducción cinemática del movimiento {21} y su derivada temporal.
 +
#Considérese el caso en que los parámetros del sistema verifican la relación <math>v_0=\omega R </math>. ¿Qué tipo de movimiento realiza el disco respecto del plano fijo? Determine gráficamente, y de manera razonada, las posiciones de los C.I.R. correspondientes a los movimientos {01}, {20} y {21}.
 +
#También en el caso de  <math>v_0=\omega R </math>, calcule las componentes intrínsecas de la aceleración y la velocidad del centro <math>C </math> del disco en movimiento {21}, en función del tiempo. Obtenga la ley horaria <math>s(t) </math> para la distancia recorrida por el centro <math>C </math> del disco, desde el instante inicial, sobre la trayectoria que dicho punto describe en el plano <math>\Pi_1 </math>.

Revisión de 16:57 5 oct 2015

Contenido

1 Problemas del boletín

1.1 Aro con deslizador

Sea un aro de centro C y radio R (sólido "2") que se mueve, en un plano fijo OX1Y1 (sólido "1"), de tal modo que está obligado a deslizar en todo instante por un pasador giratorio situado en el punto O, y además se halla articulado en su punto A a un deslizador que se mueve siempre sobre el eje horizontal OX1 (ver figura). Con carácter auxiliar, se define el sistema de ejes OX2Y2 (sólido "2") solidario con el aro en su movimiento. Se pide:

  1. Determinar gráfica y analíticamente la posición del C.I.R. del movimiento {21}.
  2. Sabiendo que el ángulo θ, que forman los ejes OX1 y AX2, verifica la ley horaria θ(t) = ωt (donde ω es una constante conocida), calcular \vec{v}_{21}^A(t) y \vec{a}_{21}^C(t).

La figura muestra el mecanismo de biela-manivela. La manivela (sólido "0") gira alrededor del punto O con velocidad angular uniforme ω. La biela (sólido "2") gira alrededor de su punto de unión con la manivela (punto A). El otro extremo de la biela está unido (punto B) al deslizador (sólido "3") que realiza una traslación sobre el eje X1

Utilizando el triángulo OAB y la descomposición {31}={32}+{20}+{01}, verifica que el movimiento {31} es una traslación.

  1. Determina gráficamente la posición de los C.I.R de todos los movimientos del problema.
  2. Determina los vectores \vec{v}^B_{21}(t) y \vec{a}^B_{21}(t).

1.2 Placa empujando un disco

El cuadrado de la figura (sólido "0") realiza un movimiento plano cuando uno de sus lados desliza sobre un plano horizontal fijo (sólido "1"). El cuadrado empuja a un disco de radio R (sólido "2") que rueda sin deslizar sobre el plano "1".

  1. Determine la posición de los C.I.R. de los diferentes movimientos en el instante reflejado en la figura.
  2. Determine las reducciones cinemáticas de los movimientos en el instante en que la velocidad absoluta del punto A del sólido "0" es \vec{v}_{01}^A = v\vec{\imath}.
  3. Si el sistema parte del reposo y el punto A del sólido "0" realiza un movimiento uniformemente acelerado, con aceleración a0, obtenga la expresión en función del tiempo del vector rotación \vec{\omega}_{21}(t) y su derivada temporal \vec{\alpha}_{21}(t).
  4. En las condiciones del apartado anterior, calcule la expresión de la aceleración \vec{a}_{21}^D, así como la velocidad y aceleración relativa \vec{v}_{20}^B y \vec{a}_{20}^B.

1.3 CIR de un velocípedo

Los radios de las ruedas delantera (sólido "2") y trasera (sólido "0") de un velocípedo son R y r, respectivamente (R > r); y los puntos de contacto de aquéllas con el suelo (sólido "1") están separados una distancia d. Determinar gráficamente la posición del C.I.R. del movimiento {20}, sabiendo que las dos ruedas del velocípedo ruedan sin deslizar sobre el suelo.

1.4 Movimiento de barra apoyada en planos no ortogonales

Una barra rígida (sólido “2”) de longitud L realiza un movimiento plano cuando sus extremos A y B deslizan, respectivamente, por un plano horizontal y otro inclinado (sólido “1”) que forman un ángulo π / 4.
  1. Describa la reducción cinemática del movimiento {21} en términos del ángulo θ y de su derivada temporal \dot{\theta}, así como la posición del C.I.R.
  2. Si el extremo A realiza un movimiento rectilíneo uniforme con velocidad v0, obtenga el vector rotación \vec{\omega}_{21} y su derivada temporal \vec{\alpha}_{21}, en función de la posición de la barra.
  3. En las condiciones del apartado anterior, obtenga la expresión de la velocidad y la aceleración del extremo B.

2 Otros problemas

2.1 Disco apoyado en una placa y una pared

El sistema mecánico de la figura está compuesto por los siguientes sólidos rígidos:

  1. Sólido "1": plano fijo O1X1Y1.
  2. Sólido "3": placa cuadrada, de lado L, que desliza sobre el eje O1X1, manteniendo su lado inferior completo en permanente contacto con él.
  3. Sólido "2": disco, de centro en C y radio R que, en todo instante, rueda sin deslizar sobre el eje O1Y1 en el punto de contacto B, a la vez que rueda y desliza sobre la placa cuadrada en el punto de contacto A.
  4. Sólido "0": sistema de ejes AX0Y0, definido de tal modo que el eje AY0 contiene permanentemente al centro C del disco, mientras que el eje AX0 es tangente a dicho disco.

En el instante considerado en la figura

  1. determina gráficamente la posición de los C.I.R. I21, I20, I03, I23, I01.
  2. Utilizando como parámetro el ángulo θ del dibujo (ángulo que forma el eje AX0 con respecto al lado superior de la placa cuadrada), y teniendo presentes las leyes de composición de velocidades y de velocidades angulares aplicadas a:


      \{21\} \equiv \{20\}+\{03\}+\{31\}

calcula las reducciones cinemáticas en C de los movimientos {20}, {03}, {31} y {21}:

2.2 Barra horizontal sobre un disco

El sistema de la figura consta de un disco (sólido "0"), de centro O y radio R, que rueda sin deslizar sobre el eje horizontal O1X1 del triedro fijo O1X1Y1 (sólido "1"); y de una barra de longitud indefinida (sólido "2"), que se desplaza horizontalmente con velocidad constante v0, manteniéndose siempre en contacto tangente con el perímetro del disco (punto A) y sin deslizar sobre éste. Halla:

  1. Las reducciones cinemáticas de los movimientos {21}, {01} y {20} en el centro del disco (punto O), es decir: {\vec{\omega}_{21};\vec{v}_{21}^O}, {\vec{\omega}_{01};\vec{v}_{01}^O} y {\vec{\omega}_{20};\vec{v}_{20}^O}.
  2. La aceleración relativa barra-disco del punto de contacto A, es decir, \vec{a}_{20}^A.

2.3 Partícula moviéndose radialmente sobre el radio de un disco

Una partícula P recorre con velocidad constante v0 el diámetro de un disco de radio R (sólido "0"). A su vez, el disco, contenido en todo instante en el plano fijo OX1Y1 (sólido "1") rueda sin deslizar sobre el eje OX1, de tal modo que su centro C avanza con velocidad \vec{v}_{01}^C=v_0\,\vec{\imath}_1.

Asociando al disco el triedro solidario CX0Y0 (sólido "0"), y definiendo un triedro auxilar PX2Y2 (sólido "2") cuyos ejes PX2 y PY2 tienen las mismas direcciones que los ejes CX0 y CY0, respectivamente; determina, en función de los datos del problema (R y v0) y de las coordenadas polares que se definen en la figura (ρ y θ):

  1. La velocidad absoluta (\vec{v}_{21}^P) y la aceleración absoluta (\vec{a}_{21}^P) de la partícula P.
  2. La posición del C.I.R. del movimiento {21} (analíticamente).

Nota: Se recomienda el uso de la base vectorial asociada al triedro "0" para resolver el ejercicio.

2.4 Disco articulado con una varilla

El mecanismo de la figura está formado por un disco (sólido "0"), de radio R; y por una varilla OA (sólido "2"), de longitud 2R, articulada en su extremo O al centro del disco. El disco rueda sin deslizar sobre la recta fija (sólido "1") de ecuación y1 = − R, mientras que el extremo A de la varilla está obligado a deslizar sobre el eje O1Y1. Sabiendo que el mecanismo se mueve conforme a la ley horaria θ(t) = ωt (donde ω es una constante conocida), se pide:

  1. Los vectores de posición, \overrightarrow{O_1A}=\vec{r}_{21}^A(t); velocidad, \vec{v}_{21}^A(t); y aceleración \vec{a}_{21}^A(t), del movimiento absoluto del extremo A de la varilla. ¿Qué tipo de movimiento describe dicho punto?
  2. Reducciones cinemáticas (vectores velocidad angular y velocidad de un punto) de los movimientos {21}, {01} y {20}.
  3. Determinación gráfica y analítica de la posición del C.I.R. del movimiento {21}.

2.5 Movimientos planos de disco, barra y cuadrado

El sistema de la figura está formado por un disco de radio R (sólido “0”), que rueda sin deslizar sobre el eje fijo OX1, desplazándose su centro C con velocidad constante v0, respecto del sistema de referencia fijo OX1Y1. Una barra de longitud 8R (sólido “2”), tiene un extremo articulado en C y está obligada a pasar por el punto fijo O. El otro extremo de la barra (A) se encuentra siempre de una acanaladura practicada en el lado de un cuadrado (sólido “3”) que desliza sobre el eje OX1.

  1. Describa las reducciones cinemáticas de los movimientos en función de los datos del enunciado y de la variable geométrica θ.
  2. Para una posición arbitraria del sistema, dada por el ángulo θ, determine gráfica o analíticamente -y de manera razonada-, las posiciones de los C.I.R. de todos los movimientos relativos en el sistema.
  3. Obtenga las posiciones en las que el cuadrado se detiene (respecto del sólido fijo) y calcule el valor de la aceleración absoluta del cuadrado (\mathbf{a}_{31}^A) en dicha posición.
  4. Calcule las componentes intrínsecas de la velocidad y la aceleración absolutas del extremo A de la barra cuando el sistema se halla en la posición dada por θ = π / 2.

2.6 Disco con varilla articulada

Un disco de radio R (sólido "0"), se mueve contenido siempre en el mismo plano vertical OXY. El centro C del disco realiza un movimiento rectilíneo uniforme con velocidad v0 respecto del plano horizontal fijo (sólido "1"), sobre el que rueda sin deslizar. Un barra rígida de longitud 4R (sólido "2"), contenida también en OXYZ, tiene su extremo A articulado en un punto del perímetro del disco, mientras que su extremo B se desliza sobre el plano horizontal.

  1. Determina la posición de los C.I.R. en las cuatro posiciones indicadas en la figura.
  2. Explica qué tipo de movimiento realiza la barra en cada uno de los instantes correspondientes a dichas posiciones.

2.7 Barra sobre dos discos que ruedan sin deslizar

Sendos discos de radios radios 2R y R (sólidos “0” y “2”, respectivamente) se encuentran siempre contenidos en el mismo plano y en contacto puntual sobre el sólido fijo “1”. Además, hay una barra rígida (sólido “3”), también contenida en el plano de los discos y en contacto puntual con éstos. El sistema se mueve de manera que los discos “0” y “2” ruedan sin deslizar de manera simultánea sobre los sólidos “1” y “3”.

  1. Determine los C.I.R. de los diferentes movimientos relativos en el sistema descrito. ¿Cómo es el movimiento instantáneo de la barra “3” respecto del sólido fijo “1”?
  2. Suponiendo que en el movimiento del disco de mayor radio respecto del sólido fijo la velocidad de su centro C es un vector constante de valor conocido \mathbf{v}_0, determine las reducciones cinemáticas de los movimientos {01}, {31} y {21}.
  3. Determine la ley horaria que sigue la distancia \displaystyle\Delta x entre los puntos de contacto de los discos con el sólido fijo. Supóngase que en el instante inicial esta distancia es 3R.
  4. Determine la reducción cinemática del movimiento relativo del disco pequeño respecto del grande, {20}. Calcule la aceleración instantánea del centro D en dicho movimiento.

2.8 Disco que arrastra una varilla

En el sistema de la figura los tres sólidos realizan un movimiento plano cuando el disco de radio R (sólido “0”) rueda sin deslizar sobre el sólido “1”. El centro del disco, C, se desplaza con una velocidad \mathbf{v}_C=v(t)\mathbf{i}_1. La barra de longitud 3R (sólido “2”) tiene su extremo C articulado en el centro del disco, mientras que se apoya en el borde O del sólido “1”.
  1. Determine gráficamente la posición de los C.I.R. de los movimientos {21}, {20} y {01}.
  2. En el instante en que la distancia entre los puntos O y B es igual a R, la velocidad del punto C es \mathbf{v}_C=v_0\ \mathbf{i}_1. Calcule las reducciones cinemáticas de los tres movimientos en el punto C.
  3. Exprese el vector de posición del punto A en el sistema “1”, \mathbf{r}_{21}^A, en función de un ángulo β arbitrario.
  4. Si \dot{\beta}=-\Omega, con Ω constante y positiva, calcule \mathbf{v}_{21}^A(t) y \mathbf{a}_{21}^A(t) para todo instante de tiempo, en función de β, Ω y R.

2.9 Movimientos planos de manivela y disco

El sistema de la figura está constituido por un plano vertical fijo OX1Y1 (sólido “1”) que en todo instante contiene a otros dos sólidos en movimiento: un disco de radio R y centro C (sólido “2”), que rueda sin deslizar sobre el eje horizontal OX1, y una manivela ranurada OA (sólido “0”) que es obligada a girar con velocidad angular constante ω alrededor de un eje permanente de rotación que pasa por el punto O y es perpendicular al plano fijo definido como sólido “1” (eje OZ1). Los movimientos de ambos sólidos se hayan vinculados entre sí porque el centro C del disco está obligado a deslizar en todo instante a lo largo de la ranura de la manivela. Considerando el movimiento {20} como el movimiento problema, se pide:
  1. Determinar el C.I.R. de dicho movimiento (I20), haciendo uso de procedimientos graficos.
  2. Utilizando como parámetro geométrico el ángulo θ indicado en la figura, obtener la reducción cinemática del movimiento {20} en el punto C, \{\vec{\omega}_{20} (\theta), \vec{v}_{20}^C (\theta)\}.
  3. Caracterizar el movimiento {20} en el instante en que θ = π / 2, indicando de forma razonada si se trata de una situación de: (a) rotación instantánea; (b) traslación instantánea; (c) movimiento helicoidal tangente, o (d) reposo instantáneo.

2.10 Disco rodando sobre una barra que rota

Una barra de longitud indefinida (sólido "0") se mueve siempre contenida en un plano fijo  \Pi_1\equiv OX_1Y_1 (sólido "1"). En el punto fijo O del plano Π1 está articulado uno de los extremos de la barra, la cuál se mueve de manera que el ángulo que forma con el eje OX1 varía linealmente con el tiempo, según la ley horaria θ(t) = ωt. Un disco de radio R (sólido "2"), también siempre contenido en el plano OX1Y1, rueda sin deslizar sobre la barra "0". Respecto de un sistema de referencia OX0Y0 solidario con la barra "0", el centro C del disco realiza un movimiento rectilíneo uniforme de velocidad v0. En el instante inicial (t = 0), el centro del disco se halla en el eje OY1.

  1. Obtenga los elementos de la reducción cinemática del movimiento {21} y su derivada temporal.
  2. Considérese el caso en que los parámetros del sistema verifican la relación v0 = ωR. ¿Qué tipo de movimiento realiza el disco respecto del plano fijo? Determine gráficamente, y de manera razonada, las posiciones de los C.I.R. correspondientes a los movimientos {01}, {20} y {21}.
  3. También en el caso de v0 = ωR, calcule las componentes intrínsecas de la aceleración y la velocidad del centro C del disco en movimiento {21}, en función del tiempo. Obtenga la ley horaria s(t) para la distancia recorrida por el centro C del disco, desde el instante inicial, sobre la trayectoria que dicho punto describe en el plano Π1.

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace