Entrar Página Discusión Historial Go to the site toolbox

Construcción de una base (GIOI)

De Laplace

(Diferencias entre revisiones)
(Componentes de un vector dado)
 
Línea 112: Línea 112:
* Para el vector <math>\vec{N}</math>
* Para el vector <math>\vec{N}</math>
-
<center><math>F_t=\vec{F}\cdot\vec{N}=\left(-12\vec{k}\right)\cdot\left(\frac{2}{3}\vec{\imath}+\frac{1}{3}\vec{\jmath}-\frac{2}{3}\vec{k}\right)=-8</math></center>
+
<center><math>F_n=\vec{F}\cdot\vec{N}=\left(-12\vec{k}\right)\cdot\left(\frac{2}{3}\vec{\imath}+\frac{1}{3}\vec{\jmath}-\frac{2}{3}\vec{k}\right)=-8</math></center>
* Para el vector <math>\vec{B}</math>
* Para el vector <math>\vec{B}</math>
-
<center><math>F_t=\vec{F}\cdot\vec{N}=\left(-12\vec{k}\right)\cdot\left(-\frac{2}{3}\vec{\imath}+\frac{2}{3}\vec{\jmath}-\frac{1}{3}\vec{k}\right)=+8</math></center>
+
<center><math>F_b=\vec{F}\cdot\vec{B}=\left(-12\vec{k}\right)\cdot\left(-\frac{2}{3}\vec{\imath}+\frac{2}{3}\vec{\jmath}-\frac{1}{3}\vec{k}\right)=+8</math></center>
Por tanto, el vector <math>\vec{F}</math> se escribe en esta base
Por tanto, el vector <math>\vec{F}</math> se escribe en esta base

última version al 15:33 7 oct 2019

Contenido

1 Enunciado

Dados los vectores

\vec{v}=\vec{\imath}+2\vec{\jmath}+2\vec{k}\qquad\qquad\vec{a}=6\vec{\imath}+9\vec{\jmath}+6\vec{k}

Construya una base ortonormal dextrógira \{\vec{T},\vec{N},\vec{B}\}, tal que

  1. El primer vector, \vec{T}, vaya en la dirección y sentido de \vec{v}
  2. El segundo, \vec{N}, esté contenido en el plano definido por \vec{v} y \vec{a} y apunte hacia el mismo semiplano (respecto de \vec{v}) que el vector \vec{a}.
  3. El tercero, \vec{B}, sea perpendicular a los dos anteriores, y orientado según la regla de la mano derecha.
  4. Supongamos un vector que en la base canónica se escribe
\vec{F}=-12\vec{k}
¿Cuál es su expresión en la base \left\{\vec{T},\vec{N},\vec{B}\right\}

2 Primer vector

Obtenemos el primer vector normalizando el vector \vec{v}, esto es, hallando el unitario en su dirección y sentido, lo que se consigue dividiendo este vector por su módulo

\vec{T}=\frac{\vec{v}}{|\vec{v}|}

Hallamos el módulo de \vec{v}

 \left|\vec{v}\right| = \sqrt{\vec{v}\cdot\vec{v}}=\sqrt{1^2+2^2+2^2}=3

por lo que

\vec{T} = \frac{1}{3}\vec{\imath}+\frac{2}{3}\vec{\jmath}+\frac{2}{3}\vec{k}

3 Segundo vector

El segundo vector debe estar en el plano definido por \vec{v} y \vec{a}, por lo que debe ser una combinación lineal de ambos

\vec{N} = \lambda\vec{v}+\mu\vec{a}

además debe ser ortogonal a \vec{T} (y por tanto, a \vec{v})

\vec{N}\cdot\vec{T} = 0 = \vec{N}\cdot\vec{v}

y debe ser unitario

\vec{N}\cdot\vec{N}=1

El procedimiento sistemático consiste en hallar la componente de \vec{a} perpendicular a \vec{v} y posteriormente normalizar el resultado.

La proyección normal la calculamos con ayuda del doble producto vectorial

\vec{a}_n = \frac{(\vec{v}\times\vec{a})\times\vec{v}}{|\vec{v}|^2}

Calculamos el primer producto vectorial

\vec{v}\times\vec{a}=\left|\begin{matrix}\vec{\imath} & \vec{\jmath} & \vec{k}   \\ 1 & 2 & 2\\ 6 & 9 & 6\end{matrix}\right|=-6\vec{\imath}+6\vec{\jmath}-3\vec{k}

Hallamos el segundo

(\vec{v}\times\vec{a})\times \vec{v}=\left|\begin{matrix}\vec{\imath} & \vec{\jmath} & \vec{k} \\ -6 & 6 & -3 \\ 1 & 2 & 2  \end{matrix}\right|=18\vec{\imath}+9\vec{\jmath}-18\vec{k}

Dividiendo por el módulo de \vec{v} al cuadrado obtenemos la componente normal

\vec{a}_n = \frac{(18\vec{\imath}+9\vec{\jmath}-18\vec{k})}{9}=2\vec{\imath}+\vec{\jmath}-2\vec{k}

Alternativamente, podemos hallar esta proyección ortogonal restando al vector completo la parte paralela

\vec{a}_n = \vec{a}-(\vec{a}\cdot\vec{T})\vec{T}

Normalizando esta cantidad obtenemos el segundo vector de la base

\vec{N} = \frac{\vec{a}_n}{|\vec{a}_n|}=\frac{2}{3}\vec{\imath}+\frac{1}{3}\vec{\jmath}-\frac{2}{3}\vec{k}

4 Tercer vector

El tercer vector lo obtenemos como el producto vectorial de los dos primeros

\vec{B}=\vec{T}\times\vec{N}=\left|\begin{matrix}\vec{\imath} & \vec{\jmath} & \vec{k} \\ 1/3 & 2/3 & 2/3 \\ 2/3 & 1/3 & -2/3\end{matrix}\right|=\frac{1}{9}\left|\begin{matrix}\vec{\imath} & \vec{\jmath} & \vec{k} \\ 1 & 2 & 2 \\ 2 & 1 & -2\end{matrix}\right| = -\frac{2}{3}\vec{\imath}+\frac{2}{3}\vec{\jmath}-\frac{1}{3}\vec{k}

Por tanto, la base ortonormal dextrógira está formada por los vectores


\begin{array}{lcr}
\vec{T} & = & \displaystyle\frac{1}{3}\vec{\imath}+\displaystyle\frac{2}{3}\vec{\jmath}+\displaystyle\frac{2}{3}\vec{k}\\&& \\
\vec{N} & = & \displaystyle\frac{2}{3}\vec{\imath}+\displaystyle\frac{1}{3}\vec{\jmath}-\displaystyle\frac{2}{3}\vec{k}\\&& \\
\vec{B} & = & -\displaystyle\frac{2}{3}\vec{\imath}+\displaystyle\frac{2}{3}\vec{\jmath}-\displaystyle\frac{1}{3}\vec{k}
\end{array}

4.1 Forma alternativa

Podemos acortar un poco el proceso invirtiendo el orden de cálculo.

El tercer vector de la base es ortogonal a los dos primeros. También es ortogonal a cualquier combinación lineal de los dos primeros, en particular a los dos vectores del enunciado \vec{v} y \vec{a}. Por ello, podemos calcular el tercer vector como

\vec{B} = \frac{\vec{v}\times\vec{a}}{|\vec{v}\times\vec{a}|}

El producto vectorial vale

\vec{v}\times\vec{a} = \left|\begin{matrix}\vec{\imath} & \vec{\jmath} & \vec{k} \\ 1 & 2 & 2 \\ 6 & 9 & 6\end{matrix}\right| = -6\vec{\imath}+6\vec{\jmath}-3\vec{k}

con módulo

\left|\vec{v}\times\vec{a}\right| = \sqrt{6^2+6^2+3^2} = 9

resultando el unitario

\vec{B} = -\frac{2}{3}\vec{\imath}+\frac{2}{3}\vec{\jmath}-\frac{1}{3}\vec{k}

El segundo vector lo obtenemos del producto vectorial del primero y el tercero, teniendo en cuenta el cambio de signo debido a la inversión del orden

\vec{N} = -\vec{T}\times\vec{B} = -\left|\begin{matrix}\vec{\imath} & \vec{\jmath} & \vec{k} \\ 1/3 & 2/3 & 2/3 \\ -2/3 & 2/3 & -1/3\end{matrix}\right|=-\frac{1}{9}\left|\begin{matrix}\vec{\imath} & \vec{\jmath} & \vec{k} \\ 1 & 2 & 2 \\ -2 & 2 & -1\end{matrix}\right| = \frac{2}{3}\vec{\imath}+\frac{1}{3}\vec{\jmath}-\frac{2}{3}\vec{k}

5 Componentes de un vector dado

Para hallar las componentes de un vector en esta base debemos proyectar sobre cada uno de los vectores que la componen.

  • Para el vector \vec{T}
F_t=\vec{F}\cdot\vec{T}=\left(-12\vec{k}\right)\cdot\left(\frac{1}{3}\vec{\imath}+\frac{2}{3}\vec{\jmath}+\frac{2}{3}\vec{k}\right)=-4
  • Para el vector \vec{N}
F_n=\vec{F}\cdot\vec{N}=\left(-12\vec{k}\right)\cdot\left(\frac{2}{3}\vec{\imath}+\frac{1}{3}\vec{\jmath}-\frac{2}{3}\vec{k}\right)=-8
  • Para el vector \vec{B}
F_b=\vec{F}\cdot\vec{B}=\left(-12\vec{k}\right)\cdot\left(-\frac{2}{3}\vec{\imath}+\frac{2}{3}\vec{\jmath}-\frac{1}{3}\vec{k}\right)=+8

Por tanto, el vector \vec{F} se escribe en esta base

\vec{F}=-4\vec{T}-8\vec{N}+8\vec{B}

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Esta página fue modificada por última vez el 15:33, 7 oct 2019. - Esta página ha sido visitada 53 veces. - Aviso legal - Acerca de Laplace