Entrar Página Discusión Historial Go to the site toolbox

5.7. Movimiento relativo de dos ventiladores

De Laplace

(Diferencias entre revisiones)
Línea 46: Línea 46:
Las velocidades angulares que aparecen en el último término son vectores ya conocidos, por lo que
Las velocidades angulares que aparecen en el último término son vectores ya conocidos, por lo que
-
<center><math>\vec{\alpha}_{20}=\vec{\omega}_{10}\times\vec{\omega}_{21}=(-\omega\vec{\jmath})\times(\omega\vec{\imath})=\omega^2\vec{k}</math></center>
+
<center><math>\vec{\alpha}_{20}=\vec{\omega}_{10}\times\vec{\omega}_{21}=(\omega\vec{\jmath})\times(\omega\vec{\imath})=-\omega^2\vec{k}</math></center>
==Velocidad y aceleración==
==Velocidad y aceleración==
Línea 60: Línea 60:
La velocidad del mismo punto en el movimiento {10} es otra rotación, en este caso en torno a un eje que pasa por A
La velocidad del mismo punto en el movimiento {10} es otra rotación, en este caso en torno a un eje que pasa por A
-
<center><math>\vec{v}^O_{10}=\vec{\omega}_{10}\times\overrightarrow{AO}=(-\omega\vec{\jmath})\times(-L\vec{\imath})=-L\omega\vec{k}</math></center>
+
<center><math>\vec{v}^O_{10}=\vec{\omega}_{10}\times\overrightarrow{AO}=(\omega\vec{\jmath})\times(-L\vec{\imath})=L\omega\vec{k}</math></center>
Sumando las dos contribuciones
Sumando las dos contribuciones
 +
 +
<center><math>\vec{v}^O_{20}=-L\omega\vec{k}+L\omega\vec{k}=\vec{0}</math></center>
 +
 +
El punto O se encuentra en reposo instantáneo en el movimiento {20}.

Revisión de 22:01 25 nov 2010

Contenido

1 Enunciado

Sobre dos paredes perpendiculares, se han colocado sendos ventiladores planos (sólidos “0” y “2”) de orientación fija, ambos a la misma altura, y con sus respectivos centros (A y B) equidistantes (distancia L) de la esquina (punto O). Los dos ventiladores rotan con velocidad angular de módulo constante igual a ω, si bien lo hacen con las orientaciones y sentidos respectivamente indicados en la figura. Definido el triedro fijo OXYZ (sólido “1”) del esquema, y considerando, como movimiento-problema, el movimiento relativo entre ambos ventiladores (movimiento {20}), determine

  1. \vec{\omega}_{20} y \vec{\alpha}_{20}
  2. \vec{v}^{O}_{20} y \vec{a}^{O}_{20};
  3. El eje instantáneo de rotación (E.I.R.) del movimiento {20}.
Archivo:ventiladores-enfrentados.png

Nota: Se recomienda la utilización del triedro “1” para la descomposición del movimiento-problema, así como el uso de su base vectorial para resolver el ejercicio.

2 Velocidad y aceleración angular

2.1 Velocidad angular

En este caso tenemos la descomposición

20 = 21 + 10

La velocidad angular es la suma de las de los dos movimientos relativos

\vec{\omega}_{20}=\vec{\omega}_{21}+\vec{\omega}_{10}

La velocidad angular del movimiento {21} va en la dirección del eje OX

\vec{\omega}_{21}=\omega\vec{\imath}

La del movimiento {10} es igual en magnitud, y de sentido opuesto a la del movimiento {01}, que es el dato que se nos da

\vec{\omega}_{10}=-\vec{\omega}_{01}=-(-\omega\vec{\jmath})=\omega\vec{\jmath}

por lo que la velocidad angular absoluta vale

\vec{\omega}_{20} = \vec{\omega}_{21}+\vec{\omega}_{10}=\omega(\vec{\imath}+\vec{\jmath})

2.2 Aceleración angular

Para las aceleraciones angulares tenemos la ley de composición

\vec{\alpha}_{20}=\vec{\alpha}_{21}+\vec{\alpha}_{10}+\vec{\omega}_{10}\times\vec{\omega}_{21}

La aceleración angular del movimiento {21} es nula, por ser una rotación con velocidad angular constante

\vec{\alpha}_{21}=\vec{0}

Lo mismo ocurre con la del movimiento {10}, ya que en este movimiento, el ventilador 0 “ve” al sistema “1” rotar con velocidad angular constante alrededor de un eje fijo

\vec{\alpha}_{10}=\vec{0}

Las velocidades angulares que aparecen en el último término son vectores ya conocidos, por lo que

\vec{\alpha}_{20}=\vec{\omega}_{10}\times\vec{\omega}_{21}=(\omega\vec{\jmath})\times(\omega\vec{\imath})=-\omega^2\vec{k}

3 Velocidad y aceleración

3.1 Velocidad

La velocidad del punto O en el movimiento {20} se puede descomponer como

\vec{v}^O_{20}=\vec{v}^O_{21}+\vec{v}^O_{10}

La velocidad de O en el movimiento {21} es la de una rotación en torno a un eje que pasa por B

\vec{v}^O_{21}=\vec{\omega}_{21}\times\overrightarrow{BO}=(\omega\vec{\imath})\times(-L\vec{\jmath})=-L\omega\vec{k}

La velocidad del mismo punto en el movimiento {10} es otra rotación, en este caso en torno a un eje que pasa por A

\vec{v}^O_{10}=\vec{\omega}_{10}\times\overrightarrow{AO}=(\omega\vec{\jmath})\times(-L\vec{\imath})=L\omega\vec{k}

Sumando las dos contribuciones

\vec{v}^O_{20}=-L\omega\vec{k}+L\omega\vec{k}=\vec{0}

El punto O se encuentra en reposo instantáneo en el movimiento {20}.


4 Eje instantáneo de rotación

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace