Enunciado

En una partícula se halla en el punto siendo su velocidad en ese instante y su aceleración . En ese instante, ¿la partícula está acelerando o frenando? ¿Dónde está el centro de curvatura en ese momento?

Aceleración

Para saber si frena o acelera, debemos calcular el signo de la aceleración tangencial.

El vector tangente es

y la aceleración tangencial

Al ser positiva, la partícula está acelerando.

Centro de curvatura

La posición del centro de curvatura es

siendo

La aceleración normal vale

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{a}_n=\vec{a}-\vec{a}_t=(-2\vec{\imath}+5\vec{\jmath}⃗+14\vec{k})-12\left(\frac{1}{3}\vec{\imath}+\frac{2}{3}\vec{\jmath}⃗+\frac{2}{3}\vec{k}\right)=\left(-6\vec{\imath}-3\vec{\jmath}⃗+6\vec{k}\right)\,\frac{\mathrm{m}}{\mathrm{s}^2}}

y su módulo

lo que da

Error al representar (error de sintaxis): {\displaystyle R=9\,\mathrm{m}\qquad\qquad \vec{N}=-\frac{2}{3}\vec{\imath}-\frac{1}{3}\vec{\jmath}⃗+\frac{2}{3}\vec{k}}

y

Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \vec{r}_c=(6\vec{\imath}+6\vec{\jmath}⃗+3\vec{k})+9\left(-\frac{2}{3}\vec{\imath}-\frac{1}{3}\vec{\jmath}⃗+\frac{2}{3}\vec{k}\right)=\left(3\vec{\jmath}+9\vec{k}\right)\,\mathrm{m}}