Enunciado
Se tiene una varilla horizontal de masa despreciable y longitud 2R. Un extremo de la varilla se encuentra fijo en el origen de coordenadas, O. La varilla gira en torno al eje OZ con velocidad angular constante . En el otro extremo, G, de la varilla se encuentra ensartado un disco homogéneo de masa m y radio R, también horizontal. El disco gira con velocidad angular constante alrededor de un eje paralelo a OZ por G. En un momento dado, la varilla se encuentra alineada con el eje OX. Para ese instante…
- ¿Cuánto vale la velocidad de B, el punto del disco situado en el extremo del disco opuesto a O?
- ¿Cuánto vale la aceleración de B, el punto del disco situado en el extremo del disco opuesto a O?
- ¿Dónde se encuentra el centro instantáneo de rotación del disco?
- ¿Cuánto vale la cantidad de movimiento del disco?
- ¿Cuánto vale el momento cinético del disco respecto al punto O?
- ¿Cuánto vale la energía cinética del disco?
- ¿Cuánto vale la fuerza que se aplica en O para mantener el sistema en movimiento?
- ¿Cuánto vale el momento resultante que se aplica en O para mantener el sistema en movimiento?
Velocidad de B
Este problema es muy parecido al de dos varillas articuladas, cambiando la segunda varilla por un disco.
Para la velocidad de B aplicamos que podemos hallar en primer lugar la velocidad de G, aplicando que la varilla efectñua un movimiento de rotación alrededor de O
Una vez que tenemos la velocidad de G, la usamos para hallar la velocidad de B
Aceleración de B
De manera similar se calcula la aceleración de B. Primero calculamos la de G, que describe un movimiento circular uniforme alrededor del origen
y a partir de la de G hallamos la de B
Centro instantáneo de rotación
Hallamos la posición del CIR del disco a partir de la velocidad de un punto y la velocidad angular del disco
Esta es la posición respecto a G. Respecto al origen de coordenadas es