|
|
Línea 32: |
Línea 32: |
| <center><math>\vec{N} = \lambda\vec{v}+\mu\vec{a}</math></center> | | <center><math>\vec{N} = \lambda\vec{v}+\mu\vec{a}</math></center> |
|
| |
|
| además debe ser ortogonal a <math>\vec{T}</math> (y por tanto, a <math>\vec{v}</math>) | | además debe ser ortogonal a <math>\vec{T}</math> (y por tanto, a <math> \vec{v} </math>) |
|
| |
|
| <center><math>\vec{N}\cdot\vec{T} = 0 = \vec{N}\cdot\vec{v}</math></center> | | <center><math>\vec{N}\cdot\vec{T} = 0 = \vec{N}\cdot\vec{v}</math></center> |
Revisión actual - 10:50 22 sep 2023
Enunciado
Dados los vectores
Construya una base ortonormal dextrógira , tal que
- El primer vector, , vaya en la dirección y sentido de
- El segundo, , esté contenido en el plano definido por y y apunte hacia el mismo semiplano (respecto de ) que el vector .
- El tercero, , sea perpendicular a los dos anteriores, y orientado según la regla de la mano derecha.
- Supongamos un vector que en la base canónica se escribe
- ¿Cuál es su expresión en la base
Primer vector
Obtenemos el primer vector normalizando el vector , esto es, hallando el unitario en su dirección y sentido, lo que se consigue dividiendo este vector por su módulo
Hallamos el módulo de
por lo que
Segundo vector
El segundo vector debe estar en el plano definido por y , por lo que debe ser una combinación lineal de ambos
además debe ser ortogonal a (y por tanto, a )
y debe ser unitario
El procedimiento sistemático consiste en hallar la componente de perpendicular a y posteriormente normalizar el resultado.
La proyección normal la calculamos con ayuda del doble producto vectorial
Calculamos el primer producto vectorial
Hallamos el segundo
Dividiendo por el módulo de al cuadrado obtenemos la componente normal
Alternativamente, podemos hallar esta proyección ortogonal restando al vector completo la parte paralela
Normalizando esta cantidad obtenemos el segundo vector de la base
Tercer vector
El tercer vector lo obtenemos como el producto vectorial de los dos primeros
Por tanto, la base ortonormal dextrógira está formada por los vectores
Forma alternativa
Podemos acortar un poco el proceso invirtiendo el orden de cálculo.
El tercer vector de la base es ortogonal a los dos primeros. También es ortogonal a cualquier combinación lineal de los dos primeros, en particular a los dos vectores del enunciado y . Por ello, podemos calcular el tercer vector como
El producto vectorial vale
con módulo
resultando el unitario
El segundo vector lo obtenemos del producto vectorial del primero y el tercero, teniendo en cuenta el cambio de signo debido a la inversión del orden
Componentes de un vector dado
Para hallar las componentes de un vector en esta base debemos proyectar sobre cada uno de los vectores que la componen.
- Para el vector
- Para el vector
- Para el vector
Por tanto, el vector se escribe en esta base