Introducción
Una onda suele definirse en términos como una “transmisión de energía sin transmisión de materia”. Esta definición, aunque un tanto imprecisa y no lo bastante general (ya que no incluye, por ejemplo, a las ondas estacionarias), sí expresa un hecho cierto: una onda viajera transmite energía desde el punto en que se origina hasta el punto al que llega, actuando como mecanismo para la “acción a distancia”.
Un cierto agente desarrolla una potencia al emitir una onda (sea ésta en una cuerda, de sonido, electromagnética o de otro tipo), esta potencia se manifiesta en una cierta densidad de energía que se propaga a lo largo de la onda y es entregada en el punto de destino a través de la potencia desarrollada por el propio medio de propagación (por ejemplo, la fuerza que ejerce una cuerda sobre un sistema situado en su extremo final.
Esta propagación es simultánea al almacenamiento de energía. La energía se propaga gracias a que en todo momento hay una cierta energía almacenada a lo largo del medio. En particular, en las ondas estacionarias tenemos almacenamiento de energía sin propagación.
A continuación nos centraremos en el caso particular de la cuerda tensa, con especial atención a las ondas sinusoidales, aunque muchos de los resultados son generalizables a otros tipos de ondas.
Energía almacenada
Energía cinética
La energía cinética almacenada en un instante dado en una longitud dada de la cuerda es la suma de las energías cinéticas de cada una de las partículas que la forman.
Si dividimos la cuerda en porciones de longitud Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mathrm{d}x}
, la masa de cada porción es
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mathrm{d}m =\mu\,\mathrm{d}x}
con Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mu}
la densidad lineal de masa. La energía cinética de esta pedazo será
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mathrm{d}K=\frac{1}{2}\mathrm{d}m\,v^2 = \frac{1}{2}\mu\,\mathrm{d}x\left(\frac{\partial y}{\partial t}\right)^2}
Integrando obtenemos la energía cinética almacenada en una porción de cuerda
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle K = \frac{1}{2}\int_0^L \mu \left(\frac{\partial y}{\partial t}\right)^2\,\mathrm{d}x}
Onda viajera sinusoidal
Aplicando la ecuación anterior a una longitud de onda de una onda viajera
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle y = A \cos(\omega t - k x)\,}
obtenemos la energía cinética de una porción de cuerda
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mathrm{d}K = \frac{1}{2}\mu A^2\omega^2\mathrm{sen}^2(\omega t - k x)\,\mathrm{d}x}
y la integral sobre una longitud de onda
donde hemos usado la fórmula del ángulo doble
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mathrm{sen}^2(x) = \frac{1-\cos(2x)}{2}}
Resultan dos integrales, la primera de las cuales vale simplemente Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \lambda}
, mientras que la segunda es una integral de Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \cos(s)}
sobre dos periodos, por lo que se anula. Por tanto
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle K = \frac{1}{4}\mu\omega^2 A^2\lambda}
Lo más importante de este resultado es que resulta una función cuadrática en la amplitud, esto es, a doble amplitud corresponde cuádruple energía.
Una cantidad derivada de esta es la densidad de energía cinética, obtenida suponiendo que la energía cinética se reparte uniformemente sobre la longitud de onda (lo cual es cierto solo en promedio).
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \frac{K}{\lambda} = \frac{1}{2}\mu \omega^2 A^2}
Esta densidad de energía no solo es cuadrática en en la amplitud, sino también la frecuencia.
Onda estacionaria sinusoidal
De forma análoga se calcula la energía cinética de la onda estacionaria
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle y = A \cos(\omega t)\cos(k x)\,}
y resulta
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle K = \frac{1}{2}\mu\omega^2 A^2\,\mathrm{sen}^2(\omega t)\int_0^\lambda \cos^2(k x)\,\mathrm{d}x= \frac{\lambda}{4}\mu \omega^2 A^2 \,\mathrm{sen}^2(\omega t)}
A diferencia del caso de la onda viajera, para el cual la energía cinética permanece constante en el tiempo, en la onda estacionaria resulta una cantidad oscilante. La razón es que para una onda viajera en una longitud de onda hay en todo momento puntos con velocidad máxima y puntos en reposo, y todas las posibilidades intermedias. En una onda estacionaria todos los puntos oscilan al unísono de forma que en un instante todos tienen la velocidad máxima (y la energía cinética es máxima), y en otro están todos en reposo (y la energía cinética es nula).
Onda triangular
Consideremos ahora el caso de un pulso triangular
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle y = f(x-vt)\qquad f(s) = \begin{cases} 0 & s < -a \\ h(a+s)/a & -a < s < 0 \\ h(a-s)/a & 0 < s < a \\ 0 & s > a\end{cases}}
y vamos a calcular la energía almacenada en toda la longitud de la onda (desde Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle -\infty}
hasta Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle +\infty}
)
La velocidad de cada punto es
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \frac{\partial y}{\partial t} = -vf'(s) = \begin{cases} 0 & s < -a \\ -vh/a & -a < s < 0 \\ vh/a & 0 < s < a \\ 0 & s > a\end{cases}}
y la energía cinética
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle K = \frac{\mu}{2}\int_{-\infty}^\infty \left(\frac{\partial y}{\partial t}\right)^2\mathrm{d}x}
haciendo el cambio de variable Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle s = x - v t}
y separando la integral en cuatro tramos queda
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle K = \frac{\mu}{2}\left(\int_{-\infty}^{-a}0\,\mathrm{d}s+\int_{-a}^{0}\frac{h^2v^2}{a^2}\,\mathrm{d}s+\int_{0}^{a}\frac{h^2v^2}{a^2}\,\mathrm{d}s+\int_{a}^{\infty}0\,\mathrm{d}s\right) = \mu \frac{h^2v^2}{a}}
Energía potencial
Una onda también almacena energía potencial ya que al deformarse se estira, almacenando energía elástica.
La energía potencial almacenada entre los puntos Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle x}
y Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle x+dx}
es el trabajo realizado al aumentar la longitud de un trozo de Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mathrm{d}x}
a Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mathrm{d}s}
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mathrm{d}U=F_T(\mathrm{d}s-\mathrm{d}x)=F_T\left(\sqrt{(\mathrm{d}x)^2+(\mathrm{d}y)^2}-\mathrm{d}x\right)\,}
donde hemos aplicado el teorema de Pitágoras para expresar Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mathrm{d}s}
.
Si la deformación es pequeña, Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mathrm{d}s}
y Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mathrm{d}x}
son cantidades muy próximas, por lo que la expresión de arriba tiende a cero. Para evitar quedarnos sin nada, multiplicamos arriba y abajo por Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mathrm{d}s+\mathrm{d}x}
y nos queda
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mathrm{d}U=F_T\frac{(\mathrm{d}s)^2-(\mathrm{d}x)^2}{\mathrm{d}s+\mathrm{d}x} \simeq F_T\frac{(\mathrm{d}y)^2}{2\mathrm{d}x}}
La variación de Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle y}
la da la derivada
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mathrm{d}y=\left(\frac{\partial y}{\partial x}\right)\mathrm{d}x}
lo que nos da el diferencial de energía potencial
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mathrm{d}U = \frac{1}{2}F_T\left(\frac{\partial y}{\partial x}\right)^2\mathrm{d}x}
y la energía potencial contenida en una una cierta longitud de cuerda
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle U=\frac{1}{2}\int_0^L F_T \left(\frac{\partial y}{\partial x}\right)^2\mathrm{d}x}
Caso de una onda viajera
En el caso de una onda puramente viajera (no una onda estacionaria, ni una suma de ondas propagándose en los dos sentidos), se cumple que
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \frac{\partial y}{\partial x}=\pm v\frac{\partial y}{\partial t}}
por lo que esta energía potencial es igual a
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle U=\frac{1}{2}\int_0^L F_T v^2\left(\frac{\partial y}{\partial t}\right)^2\mathrm{d}x}
pero
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle F_Tv^2 = \mu\,}
⇒ Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle U = \frac{1}{2}\int_0^L \mu \left(\frac{\partial y}{\partial t}\right)^2\mathrm{d}x = K}
esto es, para una onda puramente viajera, su energía cinética y su energía potencial son iguales. Esto no ocurre en el caso general.
Onda viajera sinusoidal
La energía potencial almacenada en una longitud de onda de la onda viajera
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle y = A \cos(\omega t - k x)\,}
es
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle U = \frac{1}{2}F_T A^2k^2\int_0^\lambda \mathrm{sen}^2(\omega t - k x)\mathrm{d}x = \frac{1}{4}F_TA^2k^2\lambda}
y densidad de energía potencial por unidad de longitud
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \frac{U}{\lambda}=\frac{1}{2}F_T k^2 A^2}
Aplicando que
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \frac{F_T}{\mu}=v^2=\frac{\omega^2}{k^2}}
esta densidad de energía se transforma en
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \frac{U}{\lambda}=\frac{1}{4}\mu\omega^2 A^2}
esto es, es idéntica a la densidad de energía cinética, como dedujimos antes para cualquier onda viajera.
Onda estacionaria sinusoidal
De la misma manera podemos calcular la energía potencial de una onda estacionaria
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle y = A \cos(\omega t)\cos(kx)\,}
y resulta
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle U = \frac{1}{2}F_Tk^2A^2\cos^2(\omega t)\int_0^\lambda \mathrm{sen}^2(kx)\mathrm{d}x=\frac{1}{4}F_Tk^2A^2\cos^2(\omega t)\lambda}
Aplicando de nuevo la relación entre la tensión y la velocidad de la onda
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle U = \frac{\lambda}{4}\mu\omega^2A^2\lambda \cos^2(\omega t)}
Como con la energía cinética, la energía potencial de una onda estacionaria no es una constante. Es la suma de las dos, la energía mecánica, la que permanece constante.
En este caso, podemos ver además que
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle U \neq K\,}
por no tratarse de una onda puramente viajera.
Onda triangular
Para el pulso triangular
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle y = f(x-vt)\qquad f(s) = \begin{cases} 0 & s < -a \\ h(a+s)/a & -a < s < 0 \\ h(a-s)/a & 0 < s < a \\ 0 & s > a\end{cases}}
la energía potencial almacenada en toda la longitud de la onda (desde Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle -\infty}
hasta Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle +\infty}
) es
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle U = \frac{F_T}{2}\int_{-\infty}^\infty \left(\frac{\partial y}{\partial x}\right)^2\mathrm{d}x}
La derivada que aparece en el integrando es igual a
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \frac{\partial y}{\partial x} = f'(s) = \begin{cases} 0 & s < -a \\ h/a & -a < s < 0 \\ -h/a & 0 < s < a \\ 0 & s > a\end{cases}}
haciendo el cambio de variable Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle s = x - v t}
y separando la integral en cuatro tramos queda
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle U = \frac{F_T}{2}\left(\int_{-\infty}^{-a}0\,\mathrm{d}s+\int_{-a}^{0}\frac{h^2}{a^2}\,\mathrm{d}s+\int_{0}^{a}\frac{h^2}{a^2}\,\mathrm{d}s+\int_{a}^{\infty}0\,\mathrm{d}s\right) = F_T \frac{h^2}{a}=\mu\frac{h^2v^2}{a}}
Al tratarse de una onda viajera, la energía potencial coincide con la cinética.
Energía total
La energía total de una onda será la suma de su energía cinética más la potencial
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle K=\frac{1}{2}\int_0^L \mu \left(\frac{\partial y}{\partial t}\right)^2\mathrm{d}x}
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle U=\frac{1}{2}\int_0^L F_T \left(\frac{\partial y}{\partial x}\right)^2\mathrm{d}x}
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle E=K+U=\frac{1}{2}\int_0^L \left(\mu \left(\frac{\partial y}{\partial t}\right)^2+F_T \left(\frac{\partial y}{\partial x}\right)^2\right)\mathrm{d}x}
Para los tres casos anteriores, esta energía es igual a
- Onda viajera sinusoidal
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle E = K + U = \frac{1}{4}\mu\omega^2A^2\lambda+\frac{1}{4}\mu\omega^2A^2\lambda=\frac{1}{2}\mu\omega^2A^2\lambda}
- Onda viajera estacionaria
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle E = K + U = \frac{1}{4}\mu\omega^2A^2\lambda\,\mathrm{sen}^2(\omega t)+\frac{1}{4}\mu\omega^2A^2\lambda\cos^2(\omega t)=\frac{1}{4}\mu\omega^2A^2\lambda}
- Vemos que, aunque la energía cinética y la potencial son funciones oscilantes, su suma es una constante. En una onda estacionaria, la energía cinética se transforma en potencial y viceversa.
- Onda triangular
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle E = K + U = \mu\frac{v^2h^2}{a}+\mu\frac{v^2h^2}{a}=2\mu\frac{v^2h^2}{a}}
Potencia
Supongamos una cuerda tensa que se extiende desde Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle x =0}
en adelante. Si desde extremo se genera una onda agitando la cuerda, se introduce una energía en el sistema. El ritmo al que entra este energía lo da la potencia desarrollada por el agente que está moviendo la cuerda
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle P = \mathbf{F}\cdot\mathbf{v}\,}
En el extremo de la cuerda la velocidad del punto es puramente perpendicular a la cuerda, por tratarse de una onda transversal
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mathbf{v}= \frac{\partial y}{\partial t}\mathbf{j}}
por lo que la potencia desarrollada es
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle P = F_y \frac{\partial y}{\partial t}}
La componente transversal de la fuerza la podemos calcular observando que por tratarse de una tensión es tangente a la cuerda
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mathbf{F}=-F_T(\cos\theta\mathbf{i}+\,\mathrm{sen}\,\theta\mathbf{j})}
⇒ Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle F_y = -F_T\,\mathrm{sen}\,\theta}
Si el ángulo de desviación es pequeño se cumple que
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \cos\theta\simeq 1}
⇒ Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mathrm{sen}\,\theta\simeq\,\mathrm{tg}\,\theta}
y la tangente del ángulo es la pendiente de la curva en Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle x=0}
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \mathrm{tg}\,\theta =\frac{\partial y}{\partial x}}
⇒ Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle F_y \simeq -F_T\frac{\partial y}{\partial x}}
Por tanto la potencia desarrollada por el agente que mueve la cuerda es
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle P = -F_T\frac{\partial y}{\partial x}\,\frac{\partial y}{\partial t}}
La energía inyectada en el sistema durante un tiempo Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle T}
será
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \Delta E = \int_0^T P\,\mathrm{d}t = -\int_0^T F_T\frac{\partial y}{\partial x}\,\frac{\partial y}{\partial t}\,\mathrm{d}t}
Onda viajera sinusoidal
Para una onda viajera
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle y= A \cos(\omega t - kx)\,}
la potencia desarrollada en Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle x=0}
es
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \left.\frac{\partial y}{\partial t}\right|_{x=0}= -A\omega\,\mathrm{sen}(\omega t)}
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \left.\frac{\partial y}{\partial x}\right|_{x=0}= Ak\,\mathrm{sen}(\omega t)}
⇒ Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle P = F_T\omega k A^2\,\mathrm{sen}^2(\omega t)}
y la energía que se introduce en un periodo
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \Delta E = \int_0^T P\,\mathrm{d}t = F_T\omega k A^2\int_0^T\mathrm{sen}^2(\omega t)\,\mathrm{d}t = F_T\omega k A^2\frac{T}{2}}
Aplicando que
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle T = \frac{\lambda}{v}}
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle k = \frac{\omega}{v}}
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle F_T = \mu v^2\,}
resulta
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle \Delta E = \frac{\mu \omega^2 A^2\lambda}{2}}
que es exactamente la energía almacenada en una longitud de onda. Este resultado nos dice que la cantidad de energía que entra en la onda durante un periodo se distribuye hasta ocupar una longitud de onda, y por tanto la velocidad a la que se propaga la energía es justamente Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://wikimedia.org/api/rest_v1/»:): {\displaystyle v}
, la velocidad con la que avanza la onda.
Onda viajera estacionaria
Onda triangular