Entrar Página Discusión Historial Go to the site toolbox

Preguntas de test de cinemática tridimensional de la partícula (GIE)

De Laplace

Contenido

1 Movimiento oscilatorio sobre circunferencia

Una partícula se mueve sobre la circunferencia, expresada en polares y en el SI, ρ = 1.00m, siguiendo la ley horaria

\varphi = \pi \cos(\pi t)\qquad \forall t

con \varphi el ángulo que el vector de posición forma con el eje OX positivo.

1.1 Pregunta 1

La aceleración angular en t = (1/3)s vale aproximadamente, en rad/s²,…

  • A -4.93\vec{k}
  • B -8.54\vec{k}
  • C -15.5\vec{k}
  • D +8.54\vec{k}

1.1.1 Solución

La respuesta correcta es la C.

En el caso de un movimiento circular en el plano XY con centro el origen de coordenadas, la aceleración angular es un vector en la dirección del eje OZ y cuya componente vertical es igual a la segunda derivada del ángulo \varphi respecto al tiempo

\vec{\alpha}=\ddot{\varphi}\vec{k}

En este caso

\vec{\omega} = \dot{\varphi}\vec{k}=-\pi^2\mathrm{sen}(\pi t)\vec{k}\qquad\qquad \vec{\alpha} = -\pi^3\cos(\pi t)\vec{k}

En t = (1 / 3)s, su valor es

\vec{\alpha}(t=1/3) = \left(-\pi^3\cos\left(\frac{\pi}{3}\right)\vec{k}\right)\frac{\mathrm{rad}}{\mathrm{s}^2}=\left(-\frac{\pi^3}{2}\vec{k}\right)\frac{\mathrm{rad}}{\mathrm{s}^2}=\left(-15.5\vec{k}\right)\frac{\mathrm{rad}}{\mathrm{s}^2}

1.2 Pregunta 2

Para este mismo movimiento, la velocidad lineal cuando pasa por \varphi=0 es…

  • A \pm(9.86\vec{\jmath})\mathrm{m}/\mathrm{s}.
  • B nula.
  • C \pm (3.14 \vec{\imath})\mathrm{m}/\mathrm{s}.
  • D (9.86 \vec{u}_\rho)\mathrm{m}/\mathrm{s}.

1.2.1 Solución

La respuesta correcta es la A.

A la respuesta correcta se puede llegar sin hacer ningún cálculo.

Al pasar por el origen la velocidad no es nula, sino máxima como ocurre siempre en el punto de equilibrio de un movimiento oscilatorio. Esto descarta la respuesta B.

Asimismo, la velocidad lineal es siempre tangente a la trayectoria. En \varphi=0 la circunferencia tiene tangente vertical, que es la dirección de \vec{\jmath}. Por lo tanto no puede ser correcta la respuesta C ni la D (perpendiculares ambas a la circunferencia).

Esto nos deja solo con la opción A, que es la correcta.

Podemos, no obstante, calcular la velocidad lineal en ese punto.

La velocidad lineal en un movimiento circular la podemos calcular a partir de la velocidad angular y el vector de posición

\vec{v}=\vec{\omega}\times\vec{r}

Cuando la partícula pasa por \varphi=0 su posición es

\vec{r}=R\vec{\imath}

por lo que

\vec{v}=\omega R\vec{\jmath}

La velocidad lineal, que es siempre tangente a la trayectoria, va en la dirección paralela al eje Y para este punto. No obstante, podría ser nula, por lo que debemos calcular el valor de la velocidad angular.

\omega = \dot{\varphi}=-\pi^2\mathrm{sen}(\pi t)

La partícula pasa por \varphi=0 cuando

\pi\cos(\pi t) = 0 \qquad\Rightarrow\qquad t = \frac{1}{\pi}\arccos(0) = \left(\frac{\pi/2+ n\pi}{\pi}\right)\mathrm{s}=\left(\frac{1}{2}+n\right)\mathrm{s}

Para estos instantes

\omega = -\pi^2\mathrm{sen}\left(\frac{\pi}{2}+n\pi\right)\frac{\mathrm{rad}}{\mathrm{s}}=\pm \pi^2\frac{\mathrm{rad}}{\mathrm{s}}

El signo depende del valor de n. Si n es par es negativo, y positivo si es impar. De aquí nos quedan los valores para la velocidad

\vec{v}=\left(\pm \pi^2\vec{\jmath}\right)\frac{\mathrm{m}}{\mathrm{s}}= \left(\pm 9.87\vec{\jmath}\right)\frac{\mathrm{m}}{\mathrm{s}}
Archivo:movimiento-circular-oscilatorio.gif

Este resultado se puede visualizar observando que el movimiento que realiza la partícula es oscilatorio en la coordenada \varphi, esto es, es análogo a un movimiento armónico simple, pero sobre una circunferencia en lugar de en línea recta. El punto \varphi=0 corresponde al punto central de la oscilación, en el que la velocidad es máxima, pudiendo ir en un sentido o en el opuesto.

1.3 Pregunta 3

Para el mismo movimiento, indique cuál de las siguientes figuras representa la velocidad y la aceleraciones lineales en t = (1/3)s.

Archivo:va-circular-oscilatorio-01.png Archivo:va-circular-oscilatorio-02.png
A B
Archivo:va-circular-oscilatorio-03.png Archivo:va-circular-oscilatorio-04.png
C D

1.3.1 Solución

La respuesta correcta es la B.

En principio las cuatro figuras corresponden a situaciones posibles del movimiento circular, por lo que sería necesario hallar cuánto vale la velocidad y la aceleración en el instante indicado para discernir entre las cuatro posibilidades.

Sin embargo, no es necesario. Nos basta con determinar la posición en el instante indicado. Cuando t = (1/3)\,\mathrm{s}

\varphi=\pi\cos\left(\frac{\pi}{3}\right)=\frac{\pi}{2}

es decir, la partícula se encuentra en

\vec{r}=R\cos(\varphi)\vec{\imath}+R\,\mathrm{sen}(\varphi)\vec{\jmath}=(1.00\,\vec{\jmath})\,\mathrm{m}

y hay una sola figura correspondiente a esta posición:

Archivo:va-circular-oscilatorio-02.png

Podemos, no obstante, hallar la velocidad y la aceleración para este punto. Usando las expresiones en coordenadas polares se llega a que

\vec{v}=8.55\,\mathrm{\imath}\,\frac{\mathrm{m}}{\mathrm{s}}\qquad\qquad \vec{a}=\left(15.5\vec{\imath}-73.1\,\vec{\jmath}\right)\frac{\mathrm{m}}{\mathrm{s}^2}

Este punto corresponde al primer cuarto de periodo. En él la rapidez está aumentando, y por tanto la aceleración tangencial es positiva. La aceleración normal es no nula y va hacia adentro de la circunferencia. Ello nos da el resultado de la figura.

2 Lanzamiento horizontal desde una torre

Una partícula se lanza horizontalmente con una rapidez de 8.0 m/s desde una torre de 20.0 m de altura, estando sometida exclusivamente a la aceleración de la gravedad.

2.1 Pregunta 1

¿Cuánto tarda aproximadamente en impactar con el suelo y a qué distancia de la torre lo hace?

  • A 0.8 s y 6.4 m
  • B 2.5 s y 20 m
  • C 1.4 s y 11 m
  • D 2.0 s y 16 m

2.1.1 Solución

La respuesta correcta es la D.

El movimiento de una partícula sometida exclusivamente a la acción de la gravedad es un movimiento parabólico, cuya ecuación horaria es

\vec{r}=\vec{r}_0+\vec{v}_0t+\frac{1}{2}\vec{g}t^2

donde

\vec{r}=x\vec{\imath}+z\vec{k}\qquad \vec{g}=-g\vec{k}\qquad\vec{r}_0 = h\vec{k}\qquad\vec{v}_0 = v_0\vec{\imath}

lo que nos da

\vec{r}=x\vec{\imath}+z\vec{k} = h\vec{k}+v_0t\vec{\imath}-\frac{1}{2}gt^2\vec{k}

Separando por componentes

x = v_0 t\qquad\qquad z = h -\frac{1}{2}gt^2

El movimiento es una superposición de un movimiento uniforme en la dirección horizontal con uno uniformemente acelerado en la vertical.

El impacto se produce cuando la altura se hace igual a 0.

0 = z = h - \frac{1}{2}gt^2\qquad\Rightarrow\qquad t = \sqrt{\frac{2h}{g}}= \sqrt{\frac{2\cdot 20\,\mathrm{m}}{9.81\,\mathrm{m}/\mathrm{m}^2}} = 2.0\,\mathrm{s}

La distancia de la torre a la cual impacta la da el desplazamiento horizontal en el mismo tiempo

x_i = v_0 t_i = v_0\sqrt{\frac{2h}{g}}=16\,\mathrm{m}

2.2 Pregunta 2

¿Con qué rapidez impacta con el suelo?

  • A 8.0 m/s
  • B 21.4 m/s
  • C 19.8 m/s
  • D -19.8 m/s

2.2.1 Solución

La respuesta correcta es la B.

La velocidad con la que se mueve la partícula en cada instante es

\vec{v}=\vec{v}_0+\vec{g}t = v_0\vec{\imath}-gt\vec{k}

En el momento del impacto esta velocidad vale

\vec{v}_i = v_0\vec{\imath}-g\sqrt{\frac{2h}{g}}\vec{k}=\left(v_0\vec{\imath}-\sqrt{2gh}\vec{k}=8.0\vec{\imath}-19.8\vec{k}\right)\frac{\mathrm{m}}{\mathrm{s}}

La rapidez con la que impacta la masa es el módulo de esta velocidad

|\vec{v}|=\sqrt{v_0^2+2gh}=\sqrt{8.0^2+19.8^2}\frac{\mathrm{m}}{\mathrm{s}} = 21.4\frac{\mathrm{m}}{\mathrm{s}}

3 Estudio de magnitudes instantáneas

En un instante dado, una partícula ocupa la posición \vec{r}=(5.00\vec{k})\,\mathrm{m}, tiene una velocidad \vec{v}=(4.00\vec{\jmath}+3.00\vec{k})\mathrm{m}/\mathrm{s} y una aceleración \vec{a}=(-2.50\vec{k})\mathrm{m}/\mathrm{s}^2.

3.1 Pregunta 1

¿Cuánto valen en dicho instante su aceleración tangencial y su aceleración normal, medidas en m/s²?

  • A at = 0.00 y an = 2.50
  • B at = 2.00 y an = 1.50
  • C at = − 2.50 y an = 0.00
  • D at = − 1.50 y an = 2.00

3.1.1 Solución

La respuesta correcta es la D.

No podemos hallar la aceleración tangencial como la derivada de la rapidez, ya que la conocemos en un solo instante. En su lugar, calculamos esta componente como la proyección sobre la velocidad. En forma escalar

a_t = \frac{\vec{a}\cdot\vec{v}}{|\vec{v}|}

Siendo la rapidez

|\vec{v}| = \sqrt{4.00^2+3.00^2}\frac{\mathrm{m}}{\mathrm{s}}=5.00\,\frac{\mathrm{m}}{\mathrm{s}}

y

\vec{a}\cdot\vec{v}=\left(0\cdot 0+0\cdot 4.00+(-2.50)\cdot 3.00\right)\frac{\mathrm{m}^2}{\mathrm{s}^3}=-7.50\frac{\mathrm{m}^2}{\mathrm{s}^3}

Así obtenemos

a_t = -\frac{7.50}{5.00}\frac{\mathrm{m}}{\mathrm{s}^2}=-1.50\frac{\mathrm{m}}{\mathrm{s}^2}

Con esto ya tenemos la respuesta correcta, pues hay solo una con este valor, la D.

No obstante, podemos hallar la aceleración normal escalar

a_n = \sqrt{|\vec{a}|^2-a_t^2}=\sqrt{2.50^2-(1.50)^2}\frac{\mathrm{m}}{\mathrm{s}^2}=2.00\frac{\mathrm{m}}{\mathrm{s}^2}

3.2 Pregunta 2

¿Cuánto vale el radio de curvatura en dicho instante?

  • A R = 10.0 m
  • B R \to\infty\,
  • C R = 16.7 m
  • D R = 12.5 m

3.2.1 Solución

La respuesta correcta es la D.

Una vez que tenemos la rapidez y la aceleración normal calculamos el radio de curvatura

R = \frac{|\vec{v}|^2}{a_n}= \frac{(5.00\,\mathrm{m}/\mathrm{s})^2}{2.00\,\mathrm{m}/\mathrm{s}^2}\,\mathrm{m}=12.5\,\mathrm{m}

3.3 Pregunta 3

¿Cuál es su posición en m y su velocidad en m/s un tiempo Δt = 10 s más tarde?

  • A \vec{r}= 40\vec{\jmath}-90\vec{k} y \vec{v}=4\vec{\jmath}-22\vec{k}.
  • B \vec{r}=40\vec{\jmath}+35\vec{k} y \vec{v}=4\vec{\jmath}-22\vec{k}.
  • C \vec{r}= 40\vec{\jmath}-95\vec{k} y \vec{v}=4\vec{\jmath}+3\vec{k}.
  • D No hay información suficiente para calcularlas.

3.3.1 Solución

La respuesta correcta es la D.

Para hallar la posición en un instante posterior no nos basta con los datos de la posición, la velocidad y la aceleración en un instante dado. No sabemos cómo cambian en el tiempo estas cantidades y por tanto no disponemos de información suficiente para responder a esta pregunta.

4 Caso de aceleración tangencial constante

Una partícula se mueve a lo largo de una circunferencia de radio R en el plano OXY con centro el origen, de forma que su aceleración tangencial es constante. En este movimiento la aceleración normal…

  • A aumenta cuadráticamente con el tiempo, an = At2 + Bt + C
  • B puede tener cualquier valor y cualquier variación
  • C es constante.
  • D aumenta linealmente con el tiempo, an = At + B

4.1 Solución

La respuesta correcta es la A.

Si la aceleración tangencial es constante, quiere decir que la rapidez varía linealmente con el tiempo

\frac{\mathrm{d}|\vec{v}|}{\mathrm{d}t}=a_t =\mathrm{cte}\qquad\Rightarrow\qquad |\vec{v}| = v_0+ a_t t

y por tanto la aceleración normal aumenta cuadráticamente con el tiempo

a_n = \frac{|\vec{v}|^2}{R} = \frac{(v_0+a_tt)^2}{R}=\frac{a_t^2}{R}t^2+\frac{2v_0a_t}{R}t+\frac{v_0^2}{R} = At^2+B t + C

5 Varillas que giran en sentidos opuestos

Se tiene una pequeña anilla P ensartada en la intersección de dos barras situadas en el plano XY: una pasa por el origen de coordenadas, girando uniformemente con velocidad angular Ω; la otra gira en sentido opuesto con la misma velocidad angular en valor absoluto en torno a un punto del eje OX situado a una distancia L del origen. En t = 0 ambas barras coinciden con el propio eje OX

Archivo:varillas-rotatorias-simetricas.png

5.1 Pregunta 1

¿Qué trayectoria sigue la anilla?

  • A Circular
  • B Parabólica
  • C Rectilínea
  • D Helicoidal

5.1.1 Solución

La respuesta correcta es la C.

Las dos varillas giran con la misma velocidad angular pero en sentidos opuestos, partiendo ambas del valor 0. Esto quiere decir que en todo instante, los ángulos en O y en A son iguales y el triángulo OPA es isósceles. Por tanto, el punto P se encuentra siempre sobre el punto medio de la base y su movimiento es estrictamente vertical.

Archivo:varillas-opuestas.gif

Analíticamente podemos ver que si la partícula se encuentra en

\vec{r} = x\vec{\imath}+y(\vec{\jmath}

debe cumplirse

\frac{y}{x}=\mathrm{tg}(\Omega t)\qquad\qquad \frac{y}{L-x}=\mathrm{tg}(\Omega t)

y por tanto

\frac{y}{x}=\frac{y}{L-x}\qquad \Rightarrow\qquad x = \frac{L}{2}\qquad\Rightarrow\qquad y = \frac{L}{2}\mathrm{tg}(\Omega t)

Vemos que efectivamente la anilla asciende por la recta x = L/2. Su ecuación horaria es

\vec{r}=\frac{L}{2}\vec{\imath}+\frac{L}{2}\mathrm{tg}(\Omega t)\vec{\jmath}

5.2 Pregunta 2

¿Cuales son las ecuaciones horarias de P en coordenadas polares?

  • A \rho = L/(2\cos(\Omega t))\qquad \varphi = \Omega t
  • B \rho = (L/2)\cos(\Omega t)\qquad \varphi = \Omega t
  • C \rho = L\tan(\Omega t)/2\qquad \varphi = \Omega t
  • D \rho = L/2\qquad \varphi = \Omega t

5.2.1 Solución

La respuesta correcta es la C.

5.3 Pregunta 3

¿Cuánto vale su aceleración como función del tiempo?

  • A \vec{a}=(L\,\mathrm{sen}^2(\Omega t)/\cos(\Omega t))\vec{\jmath}
  • B \vec{a}=(L\Omega^2\,\mathrm{sen}(\Omega t)/\cos^3(\Omega t))\vec{\jmath}
  • C \vec{a}=(L\Omega^2/\cos^3(\Omega t))(\cos(\Omega t)\vec{\imath}+\mathrm{sen}(\Omega t)\vec{\jmath})
  • D \vec{a}=\vec{0}

5.3.1 Solución

La respuesta correcta es la B.

6 Estudio de movimiento instantáneo

En un instante dado una partícula se encuentra en \vec{r}_1=2\vec{\imath}-3\vec{k} (m), moviéndose con velocidad \vec{v}_1 = -3\vec{\imath}+4\vec{\jmath} (m/s)y aceleración \vec{a}_1 = 25\vec{\jmath}-20\vec{k} (m/s²). En ese instante…

6.1 Pregunta 1

¿cuánto vale la aceleración tangencial (escalar)?

  • A Necesitamos conocer como varía |\vec{v}| con el tiempo.
  • B 20 m/s²
  • C (-12\vec{\imath}+16\vec{\jmath})\mathrm{m}/\mathrm{s}^2
  • D 0 m/s²

6.1.1 Solución

6.2 Pregunta 2

¿cuánto vale la aceleración normal (vector)?

  • A \vec{0}\,\mathrm{m}/\mathrm{s}^2
  • B 25 m/s²
  • C (12\vec{\imath}+9\vec{\jmath}-20\vec{k})\mathrm{m}/\mathrm{s}^2
  • D (-12\vec{\imath}+16\vec{\jmath})\mathrm{m}/\mathrm{s}^2

6.2.1 Solución

6.3 Pregunta 3

¿cuánto vale el radio de curvatura?

  • A 1.25 m.
  • B 1 m.
  • C No hay información suficiente para hallarlo.
  • D 0.80 m.

6.3.1 Solución

7 Ilustraciones de los vectores tangente y normal

De las siguientes cuatro figuras, señale cuál indica correctamente los vectores tangente y normal de un movimiento tridimensional

8 Movimiento circular en función del ángulo

Una partícula describe un movimiento circular de radio R en el plano XY alrededor del origen de coordenadas de forma que su velocidad angular cumple en cada instante

\vec{\omega}=\left(\sqrt{C\varphi}\right)\vec{k}

siendo C una constante positiva y \varphi=\varphi(t) el ángulo que el vector de posición forma con el eje OX. La partícula parte en t = 0 desde \varphi=\pi/2.

¿Qué tipo de movimiento describe esta partícula?

  • A Circular uniformemente acelerado.
  • B Oscilatorio a lo largo de la circunferencia.
  • C Uno con aceleración angular que va como 1/\sqrt{\varphi}
  • D Circular uniforme.

En este movimiento, ¿son constantes las aceleraciones tangencial y normal (escalares)?

  • A La tangencial sí, pero la normal no.
  • B Las dos son constantes.
  • C No son constantes ni una ni la otra.
  • D La normal sí, pero la tangencial no.

¿Cuánto vale la aceleración lineal de la partícula en t = 0?

  • A (C R/2)\vec{\imath}-(RC\pi/2)\vec{\jmath}
  • B (CR/2)\vec{k}
  • C -(C R/2)\vec{\imath}
  • D -(C R/2)\vec{\imath}-(RC\pi/2)\vec{\jmath}

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace