Entrar Página Discusión Historial Go to the site toolbox

Preguntas de test de cinemática del movimiento rectilíneo (GIE)

De Laplace

(Diferencias entre revisiones)
(Pregunta 3)
(Estudio de un m.a.s.)
Línea 240: Línea 240:
* '''D''' −0.20m/s²
* '''D''' −0.20m/s²
-
¿Cuánto tiempo tarda en pasa por primera vez por <math>x=+0.50\,\mathrm{m}</math>?
+
¿Cuánto tiempo tarda en pasar por primera vez por <math>x=+0.50\,\mathrm{m}</math>?
* '''A''' 1.25&thinsp;s
* '''A''' 1.25&thinsp;s

Revisión de 23:21 29 oct 2013

Contenido

1 Identificación de movimiento

Una partícula se mueve en línea recta, cumpliendo su velocidad instantánea

v = \sqrt{A- B x^2}

con A y B constantes positivas. La aceleración de una partícula que obedece esta ecuación es…

  • A proporcional a la posición x.
  • B nula.
  • C constante no nula.
  • D una combinación complicada de raíces cuadradas y polinomios.

2 Cálculo de velocidad media

Una partícula describe un movimiento rectilíneo tal que su velocidad instantánea cumple la ley

v(t) = \frac{v_0T}{t}

¿Cuánto vale la velocidad media entre t = T y t = 3T?

  • A 0.667v0
  • B 0.500v0
  • C 0.549v0
  • D No hay información suficiente para determinarla.

2.1 Solución

La respuesta correcta es la C.

La velocidad media en un intervalo es igual al cociente entre el desplazamiento realizado en un intervalo y la duración de este intervalo

v_m = \frac{\Delta x}{\Delta t}

La duración del intervalo es la diferencia entre el instante inicial final y el inicial

\Delta t = 3T-T = 2T\,

mientras que el desplazamiento es la suma de los desplazamientos infinitesimales, y por tanto igual a la integral de la velocidad instantánea

\Delta x = \int_T^{3T} v(t)\mathrm{d}t = \int_T^{3T}\frac{v_0T}{t}\mathrm{d}t = v_0T\left(\ln(3T)-\ln(T)\right)=v_0T\ln(3)

La velocidad media vale entonces

v_m = \frac{\Delta x}{\Delta t} = \frac{v_0T\ln(3)}{2T}=\frac{v_0}{2}\ln(3)

cuyo valor numérico es

v_m = \frac{\ln(3)}{2}v_0 = 0.549v_0

3 Propiedades de un m.a.s.

Una partícula describe un movimiento armónico simple de frecuencia angular ω, pudiéndose mover a lo largo de una recta horizontal. En t = 0 pasa por la posición de equilibrio con una velocidad + v0.

3.1 Pregunta 1

¿Cuánto vale la velocidad media entre t = 0 y t = T / 4, con T el periodo de oscilación?

  • A 2v0 / π
  • B Es nula.
  • C v0 / 4
  • D v0 / 2

3.1.1 Solución

La respuesta correcta es la A.

La velocidad media de una partícula en un movimiento rectilíneo se calcula como el cociente entre el desplazamiento neto y la duración del intervalo en que se realiza

v_m = \frac{\Delta x}{\Delta t}

En este caso, el intervalo se nos da como dato: es la cuarta parte del periodo

\Delta t = \frac{T}{4}

En un movimiento armónico simple, una partícula que parte del punto de equilibrio en t = 0 alcanza la máxima elongación en T / 4; en T / 2 vuelve a pasar por el origen en 3T / 4 alcanza la distancia máxima por el lado opuesto y en T regresa al origen, completando el ciclo.

Por tanto el desplazamiento entre t = 0 y t = T / 4 es igual a la elongación máxima, es decir a la amplitud.

\Delta x = A\,

y la velocidad media será igual a

v_m = \frac{A}{T/4} = \frac{4A}{T}

Queda calcular la amplitud a partir de los datos del enunciado.

Tenemos que la ecuación general de un movimiento armónico simple es

x = x_0\cos(\omega t)+\frac{v_0}{\omega}\mathrm{sen}(\omega t)

En esta ocasión la posición inicial es nula y el movimiento se reduce a un seno, como en la gráfica anterior

x = \frac{v_0}{\omega}\mathrm{sen}(\omega t)

La máxima elongación se da cuando el seno vale 1, por lo que la amplitud vale

A = \frac{v_0}{\omega}

y queda la velocidad media

v_m = \frac{4v_0}{\omega T}

pero

\omega = \frac{2\pi}{T}

lo que nos da finalmente

v_m = \frac{4v_0}{2\pi} = \frac{2}{\pi}v_0

3.2 Pregunta 2

¿Cuánto vale la aceleración en t = T / 4?

  • A + 4v0 / T
  • B Es nula.
  • C − 4v0 / T
  • D v0ω

3.2.1 Solución

La respuesta correcta es la D.

La aceleración en un movimiento armónico simple tiene la expresión

a = − ω2x

con x la posición medida respecto a la de equilibrio. En t = T / 4 la elongación es la máxima y

a(t=T/4) = -\omega^2 A = -\omega^2 \frac{v_0}{\omega} = -\omega v_0

4 Movimiento con dependencia exponencial

En un movimiento rectilíneo en el que la velocidad depende de la posición como

v = A\mathrm{e}^{\lambda x}\,

¿cuánto vale la aceleración?

  • A a = 0
  • B a = Aλeλx
  • C a = A2λex
  • C a = A2ex / 2

4.1 Solución

La respuesta correcta es la C.

Hallamos la aceleración calculando la derivada de la velocidad respecto al tiempo, lo cual se consigue aplicando la regla de la cadena

a = \frac{\mathrm{d}v}{\mathrm{d}t}=\frac{\mathrm{d}v}{\mathrm{d}x}\,\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}v}{\mathrm{d}x}v

lo que da

\frac{\mathrm{d}v}{\mathrm{d}x}=A\lambda\mathrm{e}^{\lambda x}\qquad\Rightarrow\qquad a = \left(A\lambda\mathrm{e}^{\lambda x}\right)\left(A\mathrm{e}^{\lambda x}\right)=A^2\lambda\mathrm{e}^{2\lambda x}

Alternativamente, podemos calcularlo directamente a partir de

a = \frac{\mathrm{d}\ }{\mathrm{d}x}\left(\frac{v^2}{2}\right)

queda

a = \frac{\mathrm{d}\ }{\mathrm{d}x}\left(\frac{A^2\mathrm{e}^{2\lambda x}}{2}\right) = A^2\lambda\mathrm{e}^{2\lambda x}

5 Gráfica de una aceleración

La gráfica de la figura representa la aceleración de un movimiento rectilíneo entre t = 0\,\mathrm{s} y t=12\,\mathrm{s}. La partícula parte del reposo en x = 0.

Archivo:aceleracion-recta.png

5.1 Pregunta 1=

¿Cuánto vale la rapidez en t=12\,\mathrm{s}?

  • A 36 m/s.
  • B Es nula.
  • C 18 m/s.
  • D 72 m/s.

5.1.1 Solución

La respuesta correcta es la B.

La ecuación de esta aceleración es, en el SI,

a(t) = 6-t\,

que integrada nos da la velocidad instantánea

v(t) = 6t - \frac{t^2}{2}\,

En t = 12s esta velocidad vale

v(12\,\mathrm{s}) =(72-72)\,\mathrm{m}/\mathrm{s}=0\,\mathrm{m}/\mathrm{s}

con lo que la rapidez en ese instante es también nula. Gráficamente esto quiere decir que en la gráfica de la aceleración, el a´rea sobre el eje equivale al área bajo él.

5.2 Pregunta 2

¿Cuánto vale la rapidez en t=6\,\mathrm{s}?

  • A 36 m/s.
  • B Es nula.
  • C 18 m/s.
  • D 72 m/s.

5.2.1 Solución

La respuesta correcta es la C.

Para este instante, en cambio

v(6\,\mathrm{s}) = (36-18)\,\mathrm{m}/\mathrm{s}=18\,\mathrm{m}/\mathrm{s}

que también es el valor de la rapidez en ese instante.

5.3 Pregunta 3

¿Cuál es el desplazamiento neto entre t=0\,\mathrm{s} y t=12\,\mathrm{s}?

  • A 72 m.
  • B 144 m.
  • C 0 m.
  • D -432 m.

5.3.1 Solución

La respuesta correcta es la B.

Para hallar el desplzamiento debemos integrar la velocidad, con el resultado

x(t) = 3t^2 -\frac{t^3}{6}

que en t=12s vale

x(12\,\mathrm{s}) = 144\,\mathrm{m}

Puesto que la posición inicial es x=0, el desplazamiento en este intervalo es

\Delta x = 144\,\mathrm{m}

6 Estudio de un m.a.s.

Una partícula describe un movimiento armónico simple alrededor de x = 0 tal que comienza en la posición de equilibrio con velocidad +0.40 m/s alcanzando el máximo alejamiento en t=2\,\mathrm{s}

¿Cuánto vale la amplitud del movimiento?

  • A 0.31 m
  • B No hay información suficiente para hallarla
  • C 0.80 m
  • D 0.51 m

¿Cuánto vale la aceleración cuando pasa por x=+0.50\,\mathrm{m}?

  • A +0.20m/s²
  • B -0.31m/s²
  • C Es nula.
  • D −0.20m/s²

¿Cuánto tiempo tarda en pasar por primera vez por x=+0.50\,\mathrm{m}?

  • A 1.25 s
  • B 1.76 s
  • C 0.80 s
  • D Nunca llega a esa posición.

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace