La versión para imprimir ya no se admite y puede contener errores de representación. Actualiza los marcadores del navegador y utiliza en su lugar la función de impresión predeterminada del navegador.

Enunciado

Mediante un par de revolución, el plano (sólido "0") rota alrededor del eje vertical fijo en el sentido indicado en la figura y con velocidad angular de módulo constante , de forma que el eje permanece siempre contenido en el plano horizontal fijo (sólido "1"). A su vez, un disco (sólido "2") de centro y radio , contenido en todo instante en el plano , rueda sobre el eje horizontal en el sentido indicado en la figura y con velocidad angular de módulo constante , mientras que su centro avanza con velocidad relativa . Se denomina al punto de contacto entre el disco y el eje . Las magnitudes cinemáticas que se piden a continuación se refieren al instante representado en la figura, en el que . Se pide:

  1. Aceleración angular
  2. Velocidad
  3. Aceleración

Caracterización de los movimientos elementales {01} y {20}

Los datos contenidos en el enunciado nos permiten expresar en la base vectorial , asociada al triedro , las reducciones cinemáticas del movimiento {01} (en el punto ) y del movimiento {20} (en el punto ), así como un par de vectores geométricos que necesitaremos más adelante:

habiéndose tenido en cuenta que el punto pertenece al eje permanente de rotación del movimiento {01} (eje ), es decir, que se trata de un punto fijo en dicho movimiento (velocidad permanentemente nula).

Con vistas al cálculo de aceleraciones, resulta interesante determinar también en los movimientos {01} y {20} las aceleraciones angulares y las aceleraciones de aquellos puntos cuyas velocidades son conocidas en todo instante:

Aceleración angular {21}

Determinamos la aceleración angular aplicando la ley de composición de aceleraciones angulares:

Velocidad instantánea {21} del punto A

Para determinar la velocidad , calculamos primero las velocidades y utilizando las ecuaciones de los campos de velocidades correspondientes:

y, a continuación, aplicamos la ley de composición de velocidades en el punto :

Aceleración instantánea {21} del punto A

Conforme a la ley de composición de aceleraciones (teorema de Coriolis), la aceleración se calcula así:

Necesitamos, por tanto, calcular previamente la aceleración (mediante la ecuación del campo de aceleraciones {20}):

la aceleración (mediante la ecuación del campo de aceleraciones {01}):

y el término de Coriolis (mediante su fórmula):

Sustituyendo en la ley de composición de aceleraciones, obtenemos por fin la aceleración :