Entrar Página Discusión Historial Go to the site toolbox

Fuerza de Lorentz sobre una esfera en rotación

De Laplace

(Diferencias entre revisiones)
(Torque magnético)
(Torque magnético)
Línea 195: Línea 195:
Para el segundo término del torque magnético, en primera aproximación nos basta con el campo en el centro de la distribución de carga
Para el segundo término del torque magnético, en primera aproximación nos basta con el campo en el centro de la distribución de carga
-
<center><math>\mathbf{M}_2 = \int \rho \mathbf{r}'\times((\vec{\omega}\times\mathbf{r}')\times\mathbf{B}_C)\mathrm{d}\tau =\int \rho \mathbf{r}'\times((\vec{\omega}\cdot\mathbf{B})\mathbf{r}'-(\mathbf{r}'\cdot\mathbf{B})\vec{\omega})\mathrm{d}\tau</math></center>
+
<center><math>\mathbf{M}_{m2} = \int \rho \mathbf{r}'\times((\vec{\omega}\times\mathbf{r}')\times\mathbf{B}_C)\mathrm{d}\tau =\int \rho \mathbf{r}'\times((\vec{\omega}\cdot\mathbf{B})\mathbf{r}'-(\mathbf{r}'\cdot\mathbf{B})\vec{\omega})\mathrm{d}\tau</math></center>
 +
 
 +
 
 +
En el primer producto vectorial aparece <math>\mathbf{r}'\times\mathbf{r}'</math>, que se anula. En el segundo
 +
 
 +
<center><math>M_i = -\int \rho(\varepsilon_{ijk}x'_jx'_rB_r\omega_k\,\mathrm{d}\tau = -\gamma QR^2 \varepsilon_{ijk}\delta_{jr}B_r\omega_k -\gamma QR^2 \varepsilon_{ijk}B_j\omega_k</math></center>
 +
 
 +
En forma vectorial
 +
 
 +
<center><math>\mathbf{M}_{m2}=\gamma QR^2 \vec{\omega}\times\mathbf{B}_C\,</math></center>
 +
 
 +
Sumando los dos términos obtenemos el torque debido al campo magnético
 +
 
 +
<center><math>\mathbf{M}_m = \gamma QR^2((\mathbf{v}_C\cdot\nabla)\mathbf{B}_C +\vec{\omega}\times\mathbf{B}_C)\,</math></center>

Revisión de 01:14 16 mar 2010

Contenido

1 Introducción

Suponemos una distribución de carga que posee simetría esférica alrededor de un punto central \mathbf{r}_C, de forma que su densidad de carga verifica

\rho(\mathbf{r})=\rho(r')\,        \mathbf{r}'=\mathbf{r}-\mathbf{r}_C\qquad r'=|\mathbf{r}'|

Suponemos que esta distribución de carga está localizada, de forma que tiende a cero rápidamente cuando r' crece

Esta distribución de carga se mueve rígidamente, de forma que la velocidad de cada punto puede escribirse como

\mathbf{v}(\mathbf{r})=\mathbf{v}_C+\vec{\omega}\times\mathbf{r}'

Asimismo, esta distribución se encuentra en el seno de un campo electromagnético externo, de forma que cada elemento de carga se encuentra sometido a una fuerza

\mathrm{d}\mathbf{F}=\rho(\mathbf{E}+\mathbf{v}\times\mathbf{B})\,\mathrm{d}\tau

2 Fuerza sobre la distribución

La fuerza neta sobre la distribución de carga será la resultante de las fuerzas diferenciales

\mathbf{F}=\int \mathrm{d}\mathbf{F}=\int\rho(\mathbf{E}+\mathbf{v}\times\mathbf{B})\,\mathrm{d}\tau

Veamos cada contribución por separado.

2.1 Fuerza eléctrica

La fuerza eléctrica sobre la distribución será

\mathbf{F}_\mathrm{e}=\int \rho\mathbf{E}\,\mathrm{d}\tau

Podemos calcular una expresión aproximada para esta fuerza aplicando que la distribución de carga está localizada en torno a su centro, de manera que podemos sustituir el campo eléctrico por su desarrollo en serie de Taylor en torno al centro de la distribución

\mathbf{E}(\mathbf{r})=\mathbf{E}_C = \mathbf{r}'\cdot\mathbf{E}_C+\frac{1}{2}\mathbf{r}'\mathbf{r}':\nabla\nabla\mathbf{E}_C + \cdots

donde \mathbf{E}_C, \nabla\mathbf{E}_C, \nabla\nabla\mathbf{E}_C son constantes iguales al valor del campo y sus derivadas sucesivas en el centro de la distribución.

De esta forma la fuerza eléctrica viene dada por la serie

\mathbf{F}_\mathrm{e}= \int \rho \mathbf{E}_C\,\mathrm{d}\tau+ \int \rho \mathbf{r}'\cdot\nabla\mathbf{E}_C\,\mathrm{d}\tau + \frac{1}{2}\int \rho \mathbf{r}'\mathbf{r}':\nabla\nabla\mathbf{E}_C\,\mathrm{d}\tau+\cdots

y, sacando las constantes fuera de las integrales

\mathbf{F}_\mathrm{e}=Q\mathbf{E}_C+(\mathbf{p}\cdot\nabla)\mathbf{E}+\frac{1}{2}\mathsf{Q}:\nabla\nabla\mathbf{E}_C+\cdots

donde

Q=\int\rho\,\mathrm{d}\tau        \mathbf{p}=\int\rho\,\mathbf{r}'\mathrm{d}\tau        \mathsf{Q}=\int \rho\mathbf{r}'\mathbf{r}'\,\mathrm{d}\tau

Aquí Q es la carga neta de la distribución. \mathbf{p} es el momento dipolar, el cual se anula debido a la simetría de la distribución.

El término \mathsf{Q} es un tensor. Por la simetría de la distribución, este tensor es realmente un escalar, ya que

Q_{ik}=\int \rho x'_ix'_k\,\mathrm{d}\tau=0\qquad(i\neq k)

y

Q_{ii}=\int \rho {x'_i}^2\,\mathrm{d}\tau = \frac{1}{3}\int \rho r'^2 \,\mathrm{d}\tau = \gamma QR^2 \qquad (i=k)

aquí γ es un coeficiente que depende de la forma concreta de la distribución. Para una esfera cargada uniformemente en volumen vale 1/5, para una cargada en superficie es 1/3, para un decaimiento exponencial vale 4. Reuniendo los dos resultados

\mathsf{Q}=\gamma Q R^2 \mathsf{I}\,

Llevando esto a la expresión de la fuerza, queda

\mathbf{F}_e = Q\mathbf{E}_C + \frac{\gamma}{2}QR^2\mathsf{I}:\nabla\nabla\mathbf{E}+\cdots

pero la contracción del tensor unidad con el gradiente del gradiente es simplemente el laplaciano

\mathbf{F}_e = Q\mathbf{E}_C + \frac{\gamma}{2}QR^2\nabla^2\mathbf{E}+\cdots

Ahora, para un campo eléctrico externo estático y debido a cargas en posiciones no coincidentes con la distribución (como es el caso del campo de un núcleo sobre un electrón), el laplaciano del campo eléctrico se anula y la fuerza se reduce a

\mathbf{F}=Q\mathbf{E}_C

Hay que señalar que el término en QR2 no es un término cuadrupolar. El término cuadrupolar se refiere a la componente simétrica de traza nula. El término que sale aquí se debe a que el centro de fuerzas eléctricas no coincide con el centro de la distribución.

2.2 Fuerza magnética

La fuerza magnética sobre la distribución será

\mathbf{F}_\mathrm{m}=\int \rho\mathbf{v}\times\mathbf{B}\,\mathrm{d}\tau

Sustituyendo la expresión de la velocidad

\mathbf{F}_\mathrm{m}=\int\rho(\mathbf{v}_C+\vec{\omega}\times\mathbf{r}')\times\mathbf{B}\mathrm{d}\tau

Para el primer término tenemos

\mathbf{F}_{m1}=\int \rho\mathbf{v}_C\times\mathbf{B}\mathrm{d}\tau = \mathbf{v}_C\times\int\rho \mathbf{B}\mathrm{d}\tau

Aquí podemos hacer el mismo desarrollo que para el campo eléctrico y nos queda

\mathbf{F}_{m1}=Q\mathbf{v}_C\times\mathbf{B}_C + \frac{\gamma QR^2}{2}\mathbf{v}_C\times(\nabla^2\mathbf{B})

De nuevo, si este campo magnético se debe a fuentes situadas fuera de la distribución (como el núcleo sobre un electrón), el laplaciano del campo magnético es nulo y este término se reduce a

\mathbf{F}_{m1}=Q\mathbf{v}_C\times\mathbf{B}_C

Para el segundo término desarrollamos el doble producto vectorial

\mathbf{F}_{m2}=\int \rho (\vec{\omega}\cdot\mathbf{B})\mathbf{r}'\mathrm{d}\tau-\int \rho \vec{\omega}(\mathbf{r}'\cdot\mathbf{B})\mathrm{d}\tau=\mathbf{F}_{m21}+\mathbf{F}_{m22}

Aplicando ahora la serie de Taylor para el campo magnético

\mathbf{B}=\mathbf{B}_C+\mathbf{r}'\cdot\nabla\mathbf{B}_C+\frac{1}{2}\mathbf{r}'\mathbf{r}':\nabla\nabla\mathbf{B}

obtenemos en primer lugar

\mathbf{F}_{m21}=\int \rho (\vec{\omega}\cdot\mathbf{B}_C)\mathbf{r}'\mathrm{d}\tau+\int_\rho(\vec{\omega}\cdot(\mathbf{r}'\cdot\nabla\mathbf{B}))\mathbf{r}'\mathrm{d}\tau

En primer término es nulo, por la simetría. Para el segundo, empleando subíndices

F_{m21i}=\int \rho x_i\omega_j(x_k\partial_k B_j)\mathrm{d}\tau = \gamma QR^2 \delta_{ik} \omega_j\partial_k B_j = \gamma QR^2 \partial_i(\omega_jB_j)\,

o, en forma vectorial

\mathbf{F}_{m21} = \gamma QR^2 \nabla(\vec{\omega}\cdot\mathbf{B})

Para \mathbf{F}_{m22} tenemos, igualmente

\mathbf{F}_{m22}=-\int \rho \vec{\omega}(\mathbf{r}'\cdot\mathbf{B})\mathrm{d}\tau =-\vec{\omega}\int \rho\mathbf{r}'\cdot(\mathbf{r}'\cdot\nabla)\mathbf{B}_C)\mathrm{d}\tau

Empleando de nuevo subíndices

F_{m22i} = -\omega_i \int \rho x'_jx'_k\partial_k B_j\mathrm{d}\tau = -\omega_i \gamma QR^2 \delta_{jk}\partial_kB_j=-\omega_i \gamma QR^2 \partial_jB_j\,

En forma vectorial

\mathbf{F}_{m22}=-\vec{\omega}\gamma QR^2 \nabla\cdot\mathbf{B}

pero la divergencia del campo magnético es siempre nula, por lo que este término se anula. Nos queda por tanto la fuerza magnética

\mathbf{F}_m = Q\mathbf{v}_C\times\mathbf{B}_C+ \gamma QR^2\nabla(\vec{\omega}\cdot\mathbf{B})

2.3 Fuerza total

Sumando las fuerzas eléctrica y magnética obtenemos la fuerza neta

\mathbf{F}=Q(\mathbf{E}_C+\mathbf{v}_C\times\mathbf{B}_C)+\gamma QR^2 \nabla(\omega\cdot\mathbf{B})

Si las fuentes del campo eléctrico y magnético coinciden con lso puntos de la distribución, habrá que añadir los términos correspondientes a los laplacianos de los campos.

3 Momento sobre la distribución

De manera análoga se halla el momento de las fuerzas respecto al centro de la distribución. Este momento será

\mathbf{M}_C=\int \mathbf{r}'\times\mathrm{d}\mathbf{F}=\int\rho\mathbf{r}'\times(\mathbf{E}+\mathbf{v}\times\mathbf{B})\,\mathrm{d}\tau

Como con la fuerza, consideraremos cada momento por separado

3.1 Torque eléctrico

Para el término eléctrico, aplicando de nuevo la serie de Taylor nos queda

\mathbf{M}_e=\int\rho\mathbf{r}'\mathbf{E}\,\mathrm{d}\tau=
\int \rho\mathbf{r}'\times(\mathbf{E}_C+(\mathbf{r}'\cdot\nabla)\mathbf{E}_C)\,\mathrm{d}\tau

El primer término se anula, por la simetría de la distribución. Para el segundo, empleando subíndices

M_i = \int \rho \varepsilon_{ijk}x_jx_r\partial_r E_k = \gamma Q R^2 \varepsilon_{ijk} \delta_{jr} \partial_rE_k = \gamma QR^2 \varepsilon_{ijk}\partial_jE_k

o, en forma vectorial,

\mathbf{M}_e= \gamma QR^2\nabla\times\mathbf{E}

Pero, si el campo externo es estacionario, este rotacional se anula y

\mathbf{M}_e=\mathbf{0}

3.2 Torque magnético

Para el torque de origen magnético sustituimos la expresión de la velocidad

\mathbf{M}_m = \int \rho \mathbf{r}'\times((\mathbf{v}_c+\vec{\omega}\times\mathbf{r}')\times\mathbf{B})\,\mathrm{d}\tau

Desglosamos en los diferentes términos e introducimos la serie de Taylor del campo magnético.

En primer lugar tenemos

\mathbf{M}_{m1}=\int \rho\mathbf{r}'\times(\mathbf{v}_C\times\mathbf{B})\,\mathrm{d}\tau = \int \rho\mathbf{r}'\times(\mathbf{v}_C\times(\mathbf{B}_C+\mathbf{r}'\cdot\nabla\mathbf{B}_C)\,\mathrm{d}\tau

Como de costumbre, el primer término, lineal en \mathbf{r}' se anula por la simetría. Para el segundo desarrollamos el doble producto vectorial

\mathbf{M}_{m1}=\mathbf{v}_C\int \rho(\mathbf{r}'\cdot((\mathbf{r}'\cdot\nabla)\mathbf{B})\,\mathrm{d}\tau-\int\rho(\mathbf{r}'\cdot\mathbf{v}_C)(\mathbf{r}'\cdot\nabla\mathbf{B}_C)\,\mathrm{d}\tau

Separamos los dos términos. Para el primero, empleando subíndices


M_i = v_i \int\rho(x_j x_k\partial_kB_j)\mathrm{d}\tau = \gamma QR^2 v_i \delta_{jk}\partial_k B_j = \gamma QR^2 v_i \partial_jB_j

o, en forma vectorial

\mathbf{M}_{m11}=\gamma QR^2 \mathbf{v}(\nabla\cdot\mathbf{B}) = \mathbf{0}

Para el segundo, empleando también subíndices

M_i = \int \rho(v_jx'_jx'_k\partial_kB_i)\,\mathrm{d}\tau = \gamma Q R^2 v_j\delta_{jk}\partial_k B_i = \gamma QR^2 v_j\partial_jB_i

Vectorialmente

\mathbf{M}_{m1}=\gamma QR^2 (\mathbf{v}_C\cdot\nabla)\mathbf{B}_C

Para el segundo término del torque magnético, en primera aproximación nos basta con el campo en el centro de la distribución de carga

\mathbf{M}_{m2} = \int \rho \mathbf{r}'\times((\vec{\omega}\times\mathbf{r}')\times\mathbf{B}_C)\mathrm{d}\tau =\int \rho \mathbf{r}'\times((\vec{\omega}\cdot\mathbf{B})\mathbf{r}'-(\mathbf{r}'\cdot\mathbf{B})\vec{\omega})\mathrm{d}\tau


En el primer producto vectorial aparece \mathbf{r}'\times\mathbf{r}', que se anula. En el segundo

M_i = -\int \rho(\varepsilon_{ijk}x'_jx'_rB_r\omega_k\,\mathrm{d}\tau = -\gamma QR^2 \varepsilon_{ijk}\delta_{jr}B_r\omega_k -\gamma QR^2 \varepsilon_{ijk}B_j\omega_k

En forma vectorial

\mathbf{M}_{m2}=\gamma QR^2 \vec{\omega}\times\mathbf{B}_C\,

Sumando los dos términos obtenemos el torque debido al campo magnético

\mathbf{M}_m = \gamma QR^2((\mathbf{v}_C\cdot\nabla)\mathbf{B}_C +\vec{\omega}\times\mathbf{B}_C)\,

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace