Línea 32: Línea 32:
<center><math>
<center><math>
\begin{array}{lllll}
\begin{array}{lllll}
\mathrm{(a)}\,\,\,\,\,\vec{v}_I=(10\,\vec{\imath}-5\,\vec{\jmath}\,\,)\,\mathrm{m}/\mathrm{s} & \,\,\rightarrow\,\,\, & \vec{v}_I\times\vec{\omega}=\left|\begin{array}{ccc} \vec{\imath} & \vec{\jmath} & \vec{k} \\ 10 & -5 & 0 \\ 2 & -1 & 0 \end{array}\right|=\vec{0} & \,\rightarrow\,\,\, & \vec{v}_I\parallel\vec{\omega}\,\,\,\Rightarrow\,\,\,I\in \mathrm{EIRMD} \\ \\
\mathrm{(a)}\,\,\,\,\,\vec{v}_I=(10\,\vec{\imath}-5\,\vec{\jmath}\,\,)\,\mathrm{m}/\mathrm{s} & \rightarrow\,\,\, & \vec{v}_I\times\vec{\omega}=\left|\begin{array}{ccc} \vec{\imath} & \vec{\jmath} & \vec{k} \\ 10 & -5 & 0 \\ 2 & -1 & 0 \end{array}\right|=\vec{0} & \,\rightarrow\,\,\, & \vec{v}_I\parallel\vec{\omega}\,\,\,\Rightarrow\,\,\,I\in \mathrm{EIRMD} \\ \\
\mathrm{(b)}\,\,\,\,\,\vec{v}_I=(10\,\vec{\imath}-5\,\vec{\jmath}-\vec{k}\,)\,\mathrm{m}/\mathrm{s} & \,\,\rightarrow\,\,\, & \vec{v}_I\times\vec{\omega}=\left|\begin{array}{ccc} \vec{\imath} & \vec{\jmath} & \vec{k} \\ 10 & -5 & -1 \\ 2 & -1 & 0 \end{array}\right|\neq\vec{0} & \,\rightarrow\,\,\, & \vec{v}_I\not\,\parallel\vec{\omega}\,\,\,\Rightarrow\,\,\,I\not\in \mathrm{EIRMD} \\ \\
\mathrm{(b)}\,\,\,\,\,\vec{v}_I=(10\,\vec{\imath}-5\,\vec{\jmath}-\vec{k}\,)\,\mathrm{m}/\mathrm{s} & \rightarrow\,\,\, & \vec{v}_I\times\vec{\omega}=\left|\begin{array}{ccc} \vec{\imath} & \vec{\jmath} & \vec{k} \\ 10 & -5 & -1 \\ 2 & -1 & 0 \end{array}\right|\neq\vec{0} & \,\rightarrow\,\,\, & \vec{v}_I\not\,\parallel\vec{\omega}\,\,\,\Rightarrow\,\,\,I\not\in \mathrm{EIRMD} \\ \\
\mathrm{(c)}\,\,\,\,\,\vec{v}_I=(12\,\vec{\imath}-\vec{\jmath}-6\,\vec{k}\,)\,\mathrm{m}/\mathrm{s} & \,\,\rightarrow\,\,\, & \vec{v}_I\times\vec{\omega}=\left|\begin{array}{ccc} \vec{\imath} & \vec{\jmath} & \vec{k} \\ 12 & -1 & -6 \\ 2 & -1 & 0 \end{array}\right|\neq\vec{0} & \,\rightarrow\,\,\, & \vec{v}_I\not\,\parallel\vec{\omega}\,\,\,\Rightarrow\,\,\,I\not\in \mathrm{EIRMD} \\ \\
\mathrm{(c)}\,\,\,\,\,\vec{v}_I=(12\,\vec{\imath}-\vec{\jmath}-6\,\vec{k}\,)\,\mathrm{m}/\mathrm{s} & \rightarrow\,\,\, & \vec{v}_I\times\vec{\omega}=\left|\begin{array}{ccc} \vec{\imath} & \vec{\jmath} & \vec{k} \\ 12 & -1 & -6 \\ 2 & -1 & 0 \end{array}\right|\neq\vec{0} & \,\rightarrow\,\,\, & \vec{v}_I\not\,\parallel\vec{\omega}\,\,\,\Rightarrow\,\,\,I\not\in \mathrm{EIRMD} \\ \\
\mathrm{(d)}\,\,\,\,\,\vec{v}_I=(5\,\vec{\imath}-15\,\vec{\jmath}+5\,\vec{k}\,)\,\mathrm{m}/\mathrm{s} & \,\,\rightarrow\,\,\, & \vec{v}_I\times\vec{\omega}=\left|\begin{array}{ccc} \vec{\imath} & \vec{\jmath} & \vec{k} \\ 5 & -15 & 5 \\ 2 & -1 & 0 \end{array}\right|\neq\vec{0} & \,\rightarrow\,\,\, & \vec{v}_I\not\,\parallel\vec{\omega}\,\,\,\Rightarrow\,\,\,I\not\in \mathrm{EIRMD}
\mathrm{(d)}\,\,\,\,\,\vec{v}_I=(5\,\vec{\imath}-15\,\vec{\jmath}+5\,\vec{k}\,)\,\mathrm{m}/\mathrm{s} & \rightarrow\,\,\, & \vec{v}_I\times\vec{\omega}=\left|\begin{array}{ccc} \vec{\imath} & \vec{\jmath} & \vec{k} \\ 5 & -15 & 5 \\ 2 & -1 & 0 \end{array}\right|\neq\vec{0} & \,\rightarrow\,\,\, & \vec{v}_I\not\,\parallel\vec{\omega}\,\,\,\Rightarrow\,\,\,I\not\in \mathrm{EIRMD}
\end{array}
\end{array}
</math></center>
</math></center>

Revisión del 13:24 12 ene 2024

Enunciado

El campo de velocidades de un sólido rígido en movimiento helicoidal instantáneo (respecto a un triedro OXYZ de referencia) está definido mediante la siguiente reducción cinemática:

¿Por cuál de los siguientes puntos pasa el eje instantáneo de rotación y mínimo deslizamiento?

Primer método: cálculo de la velocidad del punto

Utilizando la ecuación del campo de velocidades del sólido rígido, calculamos la velocidad del punto en cada una de las opciones:

Si el punto pertenece al eje instantáneo de rotación y mínimo deslizamiento (EIRMD), la velocidad de dicho punto es necesariamente paralela al vector velocidad angular . Comprobamos que tal cosa sólo ocurre en la opción (a), la cual es por tanto la respuesta correcta:

Segundo método: determinación del EIRMD

Partiendo del conocimiento de la reducción cinemática , es posible determinar el EIRMD del movimiento helicoidal instantáneo. En efecto: aplicando la ecuación vectorial del EIRMD, obtenemos la posición (relativa a ) de un punto genérico del EIRMD:

Y conocidas las coordenadas del punto en el triedro OXYZ de referencia, es fácil determinar las coordenadas en dicho triedro de un punto genérico del EIRMD:

Comparando esta terna -paramétrica de coordenadas con las cuatro ternas propuestas en el enunciado, deducimos de inmediato que la única que corresponde a un punto es la de la respuesta (a), siendo concretamente el punto obtenido para .