Cuña en 2D y en 3D
De Laplace
Considere, en primer lugar, el movimiento plano de dos cuerpos. Uno de ellos es una cuña de masa m0, de base b y ángulo en el vértice de 45°. El segundo es un bloque de masa m que puede deslizarse sin rozamiento sobre la cuña.

Empleando como coordenadas generalizadas las distancias horizontales de la cuña a una pared fija, x1, y la del bloque al borde de la cuña, x2, calcule:
- la lagrangiana del sistema.
- dos constantes de movimiento del sistema.
- las aceleraciones
y
Considere ahora la versión tridimensional de este problema: una cuña de masa m0 de base triangular, con lados horizontales de longitud b y altura b, siempre paralelos a los ejes (no se considera rotación de la cuña ni del bloque), y sobre esta cuña desliza sin rozamiento un bloque de masa m.


Empleando como coordenadas generalizadas las distancias horizontales (x1,y1) de la cuña a paredes fijas y (x2,y2) las del bloque al vértice de la cuña (la figura de la izquierda es la vista en planta), calcule:
- la lagrangiana del sistema.
- tres constantes de movimiento del sistema.
- las aceleraciones
,
,
e
.