Entrar Página Discusión Historial Go to the site toolbox

Centro de masas de sistemas continuos

De Laplace

Contenido

1 Enunciado

Calcula por integración la posición del centro de masas de estos dos sistemas

  1. Una barra homogénea delgada de longitud a y masa m.
  2. Una barra de longitud a y densidad lineal de masa λ = Cx, siendo x la distancia a un extremo de la barra y C una constante.
  3. Una barra homogénea delgada en forma de semicírculo de radio a y masa m.

2 Solución

Para un sistema discreto la posición del centro de masas (CM) viene dada por la expresión


\displaystyle \vec{r}_{CM} = \frac{\sum\limits_{i=1}^n m_i\vec{r}_i}{\sum\limits_{i=1}^n m_i}

donde mi es la masa de cada partícula y \vec{r}_i su vector de posición. Cuando tratamos con un sistema continua, la expresión se transforma según el cambio


m_i\to\mathrm{d}m \qquad \qquad \qquad \vec{r}_i \to \vec{r}

Así, en un sistema continuo la posición del centro de masas viene dada por la expresión


\displaystyle \vec{r}_{CM} = \frac{\int \vec{r}\,\mathrm{d}m}{\int \mathrm{d}m}

siendo \vec{r} un vector que recorre cada uno de los puntos del sistema y dm la masa infinitesimal asociada a cada uno de esos puntos.

2.1 Barra recta homogénea

Consideramos el caso de una barra homogénea delgada de masa m y longitud a. Lo primero que hay que hacer es escoger un sistema de ejes para describir la posición de cada punto de la barra. Elegimos el eje OX de modo que coincida con la barra y situamos el origen en su extremo izquierdo. Con esta elección la posición de un punto genérico de la barra viene dada por el vector de posición


\vec{r} = x\,\vec{\imath} \qquad \mathrm{con} \qquad 0<x<a

La variable x es la etiqueta que identifica a cada punto de la barra.

Ahora consideramos que en cada punto de la barra hay un pequeño trocito de barra de longitud dx y masa dm. La d delante de la x y la m sólo significa que la longitud del elemento y su masa son muy pequeñas. ¿Cuanto vale está masa?.

Como la barra es homogénea, podemos definir una densidad lineal de masa como el cociente de su masa total por su longitud


\lambda = \frac{m}{a}

Con esto, si el trocito de barra tiene una longitud dx, su masa es


\mathrm{d}m = \lambda\mathrm{d}x = \frac{m}{a}\,\mathrm{d}x

Ahora podemos calcular las integrales en la expresión de \vec{r}_{CM} . La integral en el denominador es la suma de las masas de todos los puntos que podemos considerar en la barra, esto es, su masa completa


\int\mathrm{d}m = \int\limits_0^a\lambda\,\mathrm{d}x = \lambda\int\limits_0^a\mathrm{d}x = \lambda\,a = m

La integral en el numerador es


\int\vec{r}\,\mathrm{d}m = \int\limits_0^a (x\,\vec{\imath})\,\lambda\,\mathrm{d}x = \vec{\imath}\lambda\int\limits_0^a x\,\mathrm{d}x
=\vec{\imath}\,\lambda \left[\frac{x^2}{2}\right]_0^a = \frac{1}{2}\lambda\,a^2 = \frac{1}{2}m\,a

El vector \vec{\imath} y la densidad de masa λ pueden salir de la integral pues no dependen de x, es decir, son iguales no importa en que punto de la barra estemos.

Con esto el vector de posición del CM de la barra respecto de su extremo izquierdo es


\vec{r}_{CM} = \frac{ma/2}{m}\vec{\imath} = \frac{1}{2}a\,\vec{\imath}

Es decir, para encontrar el CM nos situamos en el extremo izquierdo de la barra y nos desplazamos hacia la derecha una longitud igual a la mitad de su longitud. El CM se sitúa en el centro de la barra. Esto es lógico, pues los ejes de simetría de la barra pasan todos por su centro, por lo que el CM debe situarse en él.

2.2 Barra recta con densidad variable

El procedimiento es similar al del apartado anterior. La posición de un elemento de longitud en la barra está dada por el vector


\vec{r} = x\,\vec{\imath} \qquad \mathrm{con} \qquad 0<x<a

La diferencia es que ahora la masa de cada elemento de longitud es

dm = λdx = Cxdx

La masa total de la barra es la suma de las masas de todos los elementos de longitud


m = \int\mathrm{d}m = \int\limits_0^aCx\,\mathrm{d}x = \dfrac{1}{2}Ca^2.

La integral en el numerador de la expresión que da el vector de posición del centro de masas es


\int\vec{r}\,\mathrm{d}m = \int\limits_0^a (x\,\vec{\imath})\,Cx\,\mathrm{d}x = \vec{\imath}\,C\int\limits_0^a x^2\,\mathrm{d}x
=\vec{\imath}\,C\, \left[\dfrac{x^3}{3}\right]_0^a = \frac{1}{3}C\,a^3

El vector \vec{\imath} y la constante C pueden salir de la integral pues no dependen de x, es decir, son iguales no importa en que punto de la barra estemos.

Con esto el vector de posición del CM de la barra respecto de su extremo izquierdo es


\vec{r}_{CM} = \frac{Ca^3/3}{Ca^2/2}\vec{\imath} = \frac{2}{3}a\,\vec{\imath}

Es decir, para encontrar el CM nos situamos en el extremo izquierdo de la barra y nos desplazamos hacia la derecha una longitud igual a dos tercios de su longitud. Ahora el CM se desplaza hacia la derecha porque la densidad de masa es mayor para valores mayores de x.

2.3 Barra semicircular

Consideramos ahora el caso en que la barra tiene forma de semicírculo. De nuevo, consideramos pequeños elementos de línea a lo largo de la barra. Escogemos el origen del sistema de coordenadas en el centro del semicírculo, de modo que el eje OX pase por los dos extremos de la semicircunferencia. Con estos ejes, la posición de un punto de la barra queda definida por un valor del ángulo θ


\vec{r}(\theta) = a\cos\theta\,\vec{\imath} + a\,\mathrm{sen}\theta\,\vec{\jmath}
\qquad \qquad \mathrm{con} \qquad 0\leq\theta\leq\pi

Cada elemento de línea tiene una longitud


\mathrm{d}l = R\,\mathrm{d}\theta

Como la barra es homogénea su densidad de masa es uniforme e igual a su masa dividida por su longitud


\lambda = \frac{m}{\pi\, a}

Con esto, la masa de cada elemento de línea es


\mathrm{d}m = \lambda\,\mathrm{d}l = \lambda\,a\,\mathrm{d}\theta

Podemos calcular la posición del centro de masas de la barra usando la expresión del apartado anterior. El numerador es


\int\vec{r}\,\mathrm{d}m = \int\limits_0^{\pi}(a\cos\theta\,\vec{\imath} + a\,\mathrm{sen}\theta\,\vec{\jmath}) \lambda\,a\mathrm{d}\theta=
\lambda\,a^2\left[ \mathrm{sen}\theta\,\vec{\imath} - \cos\theta\,\vec{\jmath}\right]_0^{\pi} =
2\lambda\,a^2\vec{\jmath}

Sustituyendo el valor de λ obtenemos


\int\vec{r}\,\mathrm{d}m = \frac{2}{\pi}a\,m\,\vec{\jmath}

El vector de posición del centro de masas es


\displaystyle \vec{r}_{CM} = \frac{\int\vec{r}\,\mathrm{d}m}{\int\mathrm{d}m} = \frac{\frac{2}{\pi}a\,m}{m}\vec{\jmath}
=
\frac{2}{\pi}a\,\vec{\jmath}

Debido a la simetría, el CM está en el diámetro vertical de la semicircunferencia. Como (2 / π) = 0.637, el CM está por debajo de la semicircunferencia, como se indica en la figura

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Aviso legal - Acerca de Laplace