Entrar Página Discusión Historial Go to the site toolbox

Problemas de Geometría de masas del sólido rígido (MR G.I.C.)

De Laplace

Contenido

1 Problemas del boletín

1.1 Aro centrado en el origen

Tenemos un aro homogéneo de masa M y radio R con centro O. Se escogen los ejes coordenadas como se indica en la figura.

  1. Calcula la matriz de inercia en O, usando los ejes indicados en la figura.
  2. Calcula el momento de inercia respecto a un eje que pasa por O y forma un ángulo de π / 3 con el eje OX3.
  3. El aro gira alrededor del eje anterior con un vector rotación \vec{\omega} paralelo al eje. Calcula el momento cinético en O y la energía cinética del aro.

1.2 Tres barras con simetría

El sistema de la figura es un modelo muy simplificado de hélice de un aerogenerador. Consta de tres barras iguales, de masas M y longitud L, soldadas en el punto O, de modo que forman un sólo sólido rígido. El ángulo entre las tres barras es el mismo.

  1. Calcula el momento de inercia respecto al eje OZ1 en O.
  2. Calcula el tensor de inercia en O.
  3. El sólido rota alrededor de un eje que pasa por O, está contenido en el plano OX1Z1 y forma un ángulo π / 4 con el eje OX1. Calcula el momento de inercia del sólido alrededor de ese eje.
  4. Si el vector de rotación tiene módulo ω0 y apunta hacia los sentidos positivos de los ejes OX1 y OZ1, calcula el coseno del ángulo que forman el momento cinético y el vector rotación.
  5. En este último caso, calcula la energía cinética.

2 Otros problemas

2.1 Momento de inercia de un sólido compuesto de cuatro barras y un aro

El sólido de la figura está compuesto de un aro delgado de masa m y radio R, así como de cuatro barras delgadas, cada una de masa m y longitud R, dispuestas como se indica en la figura. Todos los cuerpos son homogéneos.

  1. Calcula el momento de inercia Izz.
  2. Calcula el tensor de inercia en O expresado en los ejes cartesianos de la figura.
  3. Calcula el momento de inercia respecto al eje Δ de la figura.

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Esta página fue modificada por última vez el 10:46, 3 oct 2018. - Esta página ha sido visitada 1.926 veces. - Aviso legal - Acerca de Laplace