Entrar Página Discusión Historial Go to the site toolbox

2.2. Evolvente de una circunferencia

De Laplace

Contenido

1 Enunciado

La evolvente de una circunferencia es la curva plana que se obtiene cuando se desenrolla un hilo tenso de un carrete circular. Suponga que se tiene una bobina de radio A que se va desenrollando a ritmo constante, de forma que el punto C donde el hilo deja de hacer contacto con el carrete forma un ángulo θ = ωt con el eje OX. Una partícula material se encuentra en el punto P situado en el extremo del hilo, moviéndose con este extremo a medida que el hilo se va desenrollando.

  1. Determine el vector de posición de la partícula.
  2. Calcule la velocidad y la aceleración de la partícula.
  3. Determine la ley horaria s = s(t).
  4. Halle los vectores tangente y normal a la trayectoria.
  5. Halle el radio de curvatura y el centro de curvatura.

2 Vector de posición

Por adición de vectores

\vec{r}(t) = \overrightarrow{OP}=\overrightarrow{OC}+\overrightarrow{CP}

El vector \overrightarrow{OC} es radial y forma un ángulo ωt con el eje OX. Su módulo es A, el radio del carrete:

\overrightarrow{OC}=A\left(\cos(\omega t)\vec{\imath}+\,\mathrm{sen}(\omega t)\vec{\jmath}\right)

El vector \overrightarrow{CP} es tangente a la circunferencia y por tanto perpendicular al radio. Obtenemos el unitario en esta dirección intercambiando las dos componentes del unitario radial y cambiándole el signo a una de ellas. El sentido lo da el que para ωt < π / 2 la componente X es positiva y la Y es negativa, por tanto

\frac{\overrightarrow{CP}}{|\overrightarrow{CP}|} =  \,\mathrm{sen}(\omega t)\vec{\imath}-\cos(\omega t)\vec{\jmath}

El módulo de \overrightarrow{CP} lo da la cantidad de hilo desenrollado hasta ese momento, igual al producto del radio por el ángulo, L = Aωt

\overrightarrow{CP}=  A\omega t(\mathrm{sen}(\omega t)\vec{\imath}-\cos(\omega t)\vec{\jmath})

Sumando los dos vectores obtenemos el vector de posición

\vec{r}(t) = A\left(\cos(\omega t)+\omega t\,\mathrm{sen}(\omega t)\right)\vec{\imath}+A\left(\,\mathrm{sen}(\omega t)-\omega t\cos(\omega t)\right)\vec{\jmath}

3 Velocidad y aceleración

3.1 Velocidad

Derivando el vector de posición respecto al tiempo obtenemos

\vec{v}(t)=\frac{\mathrm{d}\vec{r}}{\mathrm{d}t}=A\omega^2 t\cos(\omega t)\vec{\imath}+A\omega^2t\,\mathrm{sen}(\omega t)\vec{\jmath}

3.2 Aceleración

Derivando de nuevo

\vec{a}(t) =\frac{\mathrm{d}\vec{v}}{\mathrm{d}t}=A\omega^2\left(\cos(\omega t)-\omega t\,\mathrm{sen}(\omega t)\right)\vec{\imath}+A\omega^2\left(\mathrm{sen}(\omega t)+\omega t\cos(\omega t)\right)\vec{\jmath}
Archivo:esquema-evolvente.png

4 Ley horaria

La rapidez con que se recorre la curva la da el módulo de la velocidad

\dot{s}=|\vec{v}| = \sqrt{\vec{v}\cdot\vec{v}} = A\omega^2 t

e integrando esta ecuación obtenemos el parámetro arco como función del tiempo

s = \frac{A\omega^2t^2}{2}

5 Triedro de Frenet

5.1 Vector tangente

Hallamos el vector unitario tangente normalizando la velocidad

\vec{T}=\frac{\vec{v}}{v}=\cos(\omega t)\vec{\imath}+\mathrm{sen}(\omega t)\vec{\jmath}

Obsérvese que el vector unitario tangente resulta paralelo al vector \overrightarrow{OC}

5.2 Vector binormal

El vector binormal es inmediato. Puesto que la trayectoria está contenida en el plano OXY, el vector binormal será el unitario perpendicular a dicho plano, por lo que \vec{B}=+\vec{k} o \vec{B}=-\vec{k}. El sentido lo da el que debe ser el del producto vectorial de \vec{v} y \vec{a}. Tomando un punto del primer cuadrante la velocidad va hacia Y positiva y la aceleración va hacia donde se curva la trayectoria, por lo que debe ser

\vec{B}=\vec{k}

5.3 Vector normal

Multiplicando vectorialmente los dos anteriores

\vec{N}=\vec{B}\times\vec{T}=-\mathrm{sen}(\omega t)\vec{\imath}+\cos(\omega t)\vec{\jmath}

6 Radio y centro de curvatura

Podemos hallar el centro y el radio de curvatura directamente a partir de la velocidad y la aceleración. Sin embargo, es más ilustrativo hallar primero las componentes intrínsecas de la aceleración

No necesitamos proyectar sobre los dos vectores unitarios, nos basta con reconocerlos en la expresión de la aceleración y observar que ésta puede escribirse como

\vec{a}(t) =A\omega^2\left(\cos(\omega t)\vec{\imath}+\mathrm{sen}(\omega t)\vec{\jmath}\right)+A\omega^3t\left(-\mathrm{sen}(\omega t)\vec{\imath}+\cos(\omega t)\vec{\jmath}\right) = A\omega^2\vec{T}+A\omega^3t\vec{N}

y por tanto

a_t = A\omega^2\,        a_n=A\omega^3t\,

Vemos que, dado que la aceleración tangencial es constante, el movimiento es uniformemente acelerado.

El radio de curvatura lo obtenemos de la velocidad y la aceleración normal

R = \frac{v^2}{a_n}=\frac{A^2\omega^4t^2}{A\omega^3t}=A\omega t

Vemos que va aumentando gradualmente en el tiempo, como corresponde a que la curva es una espiral que se va abriendo.

La posición de los centros de curvatura es

\vec{r}_c=\vec{r}+R\vec{N} = A\left(\cos(\omega t)+\omega t\,\mathrm{sen}(\omega t)\right)\vec{\imath}+A\left(\,\mathrm{sen}(\omega t)-\omega t\cos(\omega t)\right)\vec{\jmath}+A\omega t\left(-\mathrm{sen}(\omega t)\vec{\imath}+\cos(\omega t)\vec{\jmath}\right)

que nos da

\vec{r}_c=A\cos(\omega t)\vec{\imath}+A\,\mathrm{sen}(\omega t)\vec{\jmath}

Pero esta es justamente la posición del punto C. Por tanto, el conjunto de los centros de curvatura (lo que se conoce como evoluta) es la propia circunferencia del carrete.

Herramientas:

Herramientas personales
TOOLBOX
LANGUAGES
licencia de Creative Commons
Esta página fue modificada por última vez el 16:19, 23 sep 2013. - Esta página ha sido visitada 26.242 veces. - Aviso legal - Acerca de Laplace